PRF: From You for You: A Changing Era in Dentistry

1Dr. Viddyasagar Mopagar, HOD Professor, Dept of Pedodontics, Rural Dental College, Loni.
2Dr. Chirag Sankhe, Post graduate Student, Rural Dental College, Loni
3Dr Asha Nara, Associate Professor, Rural Dental College, Loni
4Dr. Sourabh Joshi, Associate Professor, Rural Dental College, Loni.
5Dr Meghna Padubidri, Senior Lecturer, Rural Dental College, Loni.
6Dr Amit Padmai, Department of Conservative and Endodontics, TKDC Kolhapur.

Corresponding Author: Dr. Chirag Sankhe, Post graduate Student, Rural Dental College, Loni

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract
Tissue regeneration is a thought-provoking area in the field of dentistry. In addition to its role in regular haemostasis, platelets have been proven to be a good source of growth factors. Offers an Enhanced healing of hard and soft tissues is offered by autologous concentrate of bloodplatelets with a suspension of growth factors. This has led to the evolution of platelet concentrates categorized as first-generation platelet concentrates such as platelet rich plasma (PRP) and second-generation such as platelet rich fibrin (PRF).

Platelet Rich Fibrin (PRF) has been shown to have several advantages over traditionally prepared Platelet Rich Plasma (PRP) as it offers a better haemostasis with minimal risks since there isn’t any use of any anticoagulants.

This simplified and cost-effective process has various applications in dentistry such as root coverage periodontal surgical procedures, enhancement of osseointegration of implants, regeneration of pulp tissue in endodontics, paediatric pulp capping procedures, healing of extraction pockets, sinus lift procedures, etc.

Introduction
Healing is a complex process, which involves cellular organization, chemical signals, and the extracellular matrix for tissue repair.1 The understanding of healing process is still incomplete, but it is well known that platelets play an important role in both haemostasis and wound healing processes.2

Regenerative potential of platelets was introduced in the 70’s, when it was observed that they contain growth factors that are responsible for increase collagen production, cell mitosis, blood vessels growth, recruitment of other cells that migrate to the site of injury, and cell differentiation induction, among others.3

PRF was first used by Choukroun et al, which consists of a matrix of autologous fibrin and has several advantages over PRP, including easier preparation and not requiring chemical manipulation of the blood, which makes it strictly an autologous preparation.4

The following review attempts to summarize the relevant literature regarding the various types of stem cell sources that have been identified, focusing on its preparation, the technique of using platelet rich fibrin (PRF), clinical applications in dentistry, its advantages and disadvantages.
What Is PRF....?

Choukroun’s platelet-rich fibrin (PRF) is a biomaterial with a distinct arrangement and three dimensional frameworks. It is observed to have a packed fibrin complex, containing leukocytes, cytokines and glycoproteins such as thrombospondin. Leukocytes that are condensed in PRF scaffold hold a necessary position in growth factor release along with immune administration. It also constitutes growth factors, such as transforming growth factor b, platelet derived growth factors, vascular endothelial growth factor, etc. which hold a critical role in the functioning of PRF in regeneration and wound healing.

Growth factors from PRF and their role

PRF Preparation

The protocol was developed using a simple centrifugation protocol requiring only 1 cycle of 12 minutes at 2700 rpm (750 g). The original objective was to spin at high centrifugation speeds in order to phase separate the layers between the red corpuscle base and the overlaying clear liquid containing leukocytes and plasma. As no anticoagulants were utilized, the resultant formulation came with a three-dimensional fibrin scaffold termed PRF.

Fundamental Mechanism of Action of PRF in Children

Pulp Capping

Platelet Rich fibrin could be an effective material used for direct pulp capping due to its excellent wound healing, tissue regeneration & osteogenic properties. Many researchers have proven that pulp tissue contains highly proliferative and clonogenic population of progenitor/stem cells which can differentiate into hard tissue forming cells on injury.

Pulp Capping in carious teeth can be unpredictable, therefore case selection can be an important criterion.

Tikku PA in his comparative study randomly allocated 45 patients into three treatment groups (n=15). Group 1 = Direct pulp capping using calcium hydroxide. Group 2 = MTA. Group 3 = MTA along with PRF. Clinical and radiographic evaluation was done every month for 6 months. Teeth were clinically evaluated for any colour change in coronal area of tooth, status of pulp vitality, presence of periodontal inflammation, presence of sinus, swelling and mobility. Radiographic evaluation was done by measuring increase in the radiographic density below the exposure site and data obtained was statistically evaluated.
The combined use of PRF and MTA can be considered as more effective direct pulp capping material than calcium hydroxide and mineral trioxide aggregate used separately. Bakshi C et al performed direct pulp capping with PRF. After clinical and radiographic examination one case with irreversible pulpitis and other case with chronic pulpitis in young patients were selected. Following caries excavation and haemorrhage control the exposure was covered with PRF followed by placing MTA on top of it. The remaining tooth was sealed with a layer of light cure GIC followed by composite resin restoration. At 1-day follow-up, patient's spontaneous symptoms had resolved. 6-months follow-up demonstrated pulp vitality, clinical function, as well as the absence of pain/tenderness to percussion/palpation/cold sensitivity tests; periapical radiograph showed normal periodontium. Bakshi C et al stated that PRF shows promising result in case of irreversible pulpitis and may be a good treatment option in comparison to endodontic treatment.

Pulpotomy

The use of formocresol as a pulpotomy agent has major disadvantages like cytotoxicity and mutagenicity. Platelet Rich fibrin with its low toxic effects and increased tissue regeneration showed excellent clinical results. Hellig et al in 1984, and Waterhouse in 2000 gave the criterion for tooth selection in pulpotomy using Platelet Rich Fibrin. The clinical criteria for selection included absence of excessive tooth mobility, absence of tenderness to percussion, and absence of gross decay and tooth destruction that would preclude its restorability. A study conducted by Damle et al in 2004 compared PRF and Calcium Hydroxide and found 100% success rate with Platelet Rich Fibrin, in which, fifty-six primary molars were treated by PRF and another 28 by calcium hydroxide.

Another study with Nagasaki et al in 2007 compared PRF vs Hydroxyapatite crystals. In this study, Plasma membrane-associated cation-binding protein 1PCAP1 was associated with the plasma membrane under natural conditions and was released from the membrane at high concentrations of Ca$^{2+}$ or Mg$^{2+}$ in vitro. These results suggest that the hydrophilic protein PCaP1 binds Ca$^{2+}$ and other cations and is stably associated with the plasma membrane, which proved that PRF was much superior to calcium hydroxyapatite crystals.

Keswani D et al showed that PRF could be used as a suitable biological and economic alternative to MTA in pulpotomy procedures of permanent teeth with incomplete root development.

Patidar Surendra et al conducted a study to observe the radiographic and clinical outcome in MTA pulpotomy versus the PRF group. In this study, a total of 50 primary molars in fifty children of both genders age 5–9 years (mean age-6.8 years), follow-up evaluation was done after 1, 3, and 6 months. At 1 and 3 months there was no clinical finding observed in both groups. After 6 months, 4 primary molars were lost to follow-up and a total of 23 patients in each group were available for clinical and radiological follow-up. The pain was noted in 4.3% of primary teeth in both the groups while mobility was noticed only in MTA group in only 4.34% of teeth whereas 4.34% of teeth in PRF group showed sign of tenderness on percussion. At 6-month follow-up, the clinical assessment showed 92% success rate in both groups. Overall radiographic success rate was 87% for PRF group whereas for MTA group it was 92%. This study showed that PRF held a promising future in the area of pulpotomy.

Apexogenesis

Apexogenesis takes place due to the regenerative properties of the pulpal reserve of cells.
Huang et al, in his study concluded that the PRF led to increased proliferation of human Dental Pulp Cells and expression of osteoprotegerin (OPG) and alkaline phosphatase (ALP) activity.21 Some amounts of human dental pulp cells present in the apical papilla usually remain vital even in case of a large periapical lesion. After the regression of the inflammation and under the influence of Hartwig’s Epithelial Root Sheath, these Dental Pulp Cells differentiate into odontoblasts like cells.

6 healthy volunteers were chosen for PRF samples. Human dental pulp cells (DPCs) were derived from healthy individuals undergoing extraction for third molars. Colorimetric assay was used to check cell proliferation. Western blot was used to evaluate the expression of osteoprotegerin (OPG). Alkaline phosphatase (ALP) activity was examined by substrate assay. This showed that OPG and ALP expression were to be regarded as markers of odontoblastic differentiation.

Apexification

Apexification is a method of inducing apical closure through the formation of mineralized tissue in the apical region of a nonvital tooth with an incompletely formed root (open apex).22 A wide array of materials have been used for apexification including calcium hydroxide, magnesium oxide, barium hydroxide, zinc oxide, calcium oxide, calcium phosphate collagen gel, tricalcium phosphate and other pastes. Calcium hydroxide is the most commonly advocated material for apexification, with long history of clinical success.23 24 25 The disadvantages include prolonged treatment time, need for multiple visits and radiographs, difficulty of the patient's recall management and increase in the risk of root fracture after dressing with calcium hydroxide for extended periods.26 An alternative to calcium hydroxide apexification is a one-step apexification technique using mineral trioxide aggregate (MTA) as an artificial barrier.

Platelet rich fibrin (PRF) can be used as a resorbable matrix material against which MTA apical barrier can be placed. PRF membrane has a soft consistency and it inherently contains some amount of moisture, still it serves as a good matrix material for placement of MTA. This is because MTA has a wet sand like consistency and can be placed without pressure application and therefore it does not require a pressure-resistant matrix for application. Moreover, MTA sets in the presence of moisture and does not require a moisture-free environment.

Another advantage of using PRF as a matrix is that it promotes wound healing and repair. Shivashankar et al reported that revitalization was possible in necrotic immature teeth after thorough disinfection of root canal system using PRF.27 Khanduri N and Kurup D have presented a successful case describing single-visit apexification using Biodentine, a new calcium silicate-based material as an apical barrier along with platelet-rich fibrin as internal matrix.28

Extraction Socket

Socket preservation using biomaterials has been proposed and autologous platelet concentrates including PRP with growth factors and PRF are employed. Hauser and Gaydarov 2013 reported (0.48%) of alveolar bone loss in extraction sockets with PRF without flap elevation compared with (3.68%) in control group at 8 weeks follow up. The authors also reported that significantly higher bone quality in the PRF group. A study by Simon et al. showed a mean width socket resorption of 0.57 mm (7.38%) with PRF after 4 months and confirmed a significant advantage in the preservation
of post extraction alveolar ridge dimensions with the use of PRF.

Another study was carried out by Simon and Von Hagen 2000 during morphometric tissue experiment in which they planned a socket preservation surgery. It showed new bone generated in only 3 weeks when the preservation procedure was conducted by using PRF only.\(^{31}\)

From above studies we can conclude that PRF has been shown to have tissue regenerative and wound healing properties. Thus it can be an effective medium for helping in natural clot formation and initiate rapid healing by increased re-vascularization and reepithelization, it can also help in faster osteogenesis.

Facial aesthetics

The use of PRF has been utilized for a variety of aesthetic procedures in medicine that focuses on improving cosmetic appearance through the treatment of conditions including scars, skin laxity and wrinkles. While various surgical procedures have been utilized, the main aim has been to improve the patient self-esteem by providing better quality of life, psychological well-being, and social function to patients and with the advancements made in PRF therapy, it is now possible to do so in a natural way.\(^{32}\)

PRF (1300 rpm for 8 min) or i-PRF (700 rpm for 3 min) has therefore been utilized in practice during combination therapies to enhance aesthetic outcomes and improve patient wound healing.\(^{33}\)

When preparing for regeneration with PRF, the treating physician must first look at the skin’s anatomy including facial lines, wrinkles, and folds to determine the depth of damage to the skin to evaluate the optimal choice of procedure to obtain desired end goals.

When performing lip augmentation and contouring, i-PRF is utilized in combination with PRF to contour the lips. If scars are present, PRF is implanted underneath the scar in order to use the fibrin matrix to bulk the lost tissues and to create a micro-environment capable of slowly releasing growth factors over an extended period of time.

The PRF is able to provide more volume, whereas the i-PRF provides more leukocytes and a higher concentration of growth factors per volume.\(^{34}\)

Sinus lift procedures

Sinus floor elevation procedures are highly effective yet not free of complications. Complications associated with sinus floor elevation include graft resorption, membrane perforation, or sinusitis.

Two studies were undertaken in which PRF was used for sinus lift procedure in which implant survival rate was 100% after a 1 year\(^{35}\) and 3-year follow-up\(^{36}\), regardless of PRF. These two studies combined PRF with deproteinized bovine bone mineral DBBM. In addition, PRF did not change bone formation, soft tissue area, resorption of residual bone grafts, and the augmented bone height. The studies did not report on membrane perforations and sinusitis, precluding any conclusion about its potential benefit in the management of complications.\(^{35,36}\)

Although in vitro and preclinical data encourage the use of PRF in sinus floor elevation, the clinical evidence gathered so far does not support its use.\(^{37}\)

Choukroun et al., attempted to evaluate the potential of PRF in combination with freeze-dried bone allograft (FDBA) in sinus floor elevation to enhance bone regeneration. Nine sinus floor augmentations were performed. Out of nine; in six sites, FDBA with PRF (test group), and in three sites FDBA without PRF (control group) was used. After healing period of 4 months, identical histologic maturation was seen in both test and control group, which was for a period of 8 months with equivalent quantities for both protocols.\(^{4}\)

Aoki et al has reported two cases with histological evaluations of PRF after the sinus augmentation
surgery. They found that the use of PRF as a graft material during sinus floor augmentation induces natural bone regeneration.38

Sherifali et al studied the efficacy of platelet-rich fibrin (PRF) on maxillary sinus augmentation. They concluded that addition of PRF to demineralized freeze-dried bone allograft DFDBA accelerates graft maturation and decreases the healing period before implant placement. Conversely, it has no beneficial effect on graft maturation.39

M.C. Fernandez et al conducted study on clinical and radiological behaviour after immediate implant placements after sinus lift when PRF and bone grafting was used in atrophic maxilla. They found that the use of PRF is useful because it promotes wound healing, growth and bone maturation, stabilization of the graft, the wound closure and hemostasis.40

Mazor \textit{et al.} stated that PRF led to stabilization of regenerated bone in the subsinus cavity up to the tip of implants during a simultaneous sinus lift and implantation procedure. This was recorded in a case series through a radiological and histological evaluation at 6 months from the surgery. Also they advocated that Choukroun's PRF, as an acceptable option.41

In summary, inconclusive results are reported on PRF in sinus floor elevation procedures whereby a lack of well-designed studies with appropriate endpoints are needed. Therefore, the effect of PRF on bone regeneration during sinus floor elevation remains questionable.

Periodontal Regeneration

Bone Reconstruction And Root Coverage

Simonpieriet al. reported and confirmed the validate usage of PRF membranes in reconstruction protocols along with FDBA, 0.5% metronidazole solution in about 20 patients who were treated using this new technique and followed-up during 1-5 years. No implant or graft loss was seen after placement of 184 dental implants. PRF membranes protects the surgical site; promotes soft tissue healing; and when its fragments mix with graft material, it functions as a “biological connector” between the different elements of graft and acts as a matrix which supports neangiogenesis, capture of stem cells, and migration of osteoprogenitor cells to the center of graft.42,43

PRF plugs can also be used in treating the residual extraction sockets. Use of autologous PRF in extracted socket filling after immediate bone augmentation using titanium membranes applied to the socket walls. Primary closure with adequate bone filling was found safe after 8 weeks or above for implant fixation.

Anilkumarat al., has reported PRF as a potential novel root coverage approach for treating gingival recession in mandibular anterior teeth using combined laterally positioned flap technique and PRF membrane. Combined use of PRF and bone graft with good results has also been reported for combined periodontic-endodontic furcation defect.44

Arocacat al., in the 6 month of their randomized clinical trial, concluded that addition of a PRF membrane positioned under the MCAF (modified coronally advanced flap) provided inferior root coverage, but an additional gain in gingival/mucosal thickness at 6 months compared to conventional therapy.45

Following the regenerative outcomes with PRP, several authors began to hypothesize whether PRF, natural platelet concentrate without the use of anti-coagulants, could further improve the outcomes observed with PRP.

There are three main added advantages that further support its use. First, PRF contains a fibrin network that facilitates blood clot formation and tissue repair. Secondly, its growth factor release kinetics have been shown to occur more slowly when compared to PRP, and
therefore regeneration may take place over a more extended period of time. Moreover, PRF contains leukocytes and macrophages, known cell types implicated in immunity and host defense. Since periodontal defects are the result of invading bacterial pathogens, the inclusion of white blood cells contained within PRF is hypothesized to further act as a bacterial resistant matrix capable of fighting bacterial pathogens.

Intrabony defect regeneration

To date, more than 17 randomized clinical trials (RCTs) have investigated the use of PRF for the repair/regeneration of periodontal intrabony defects. The various RCTs have compared the additional use of PRF to open flap debridement OFD versus OFD alone and have further investigated its use with various biomaterials and/or antibiotics. Two studies comparing defect healing with PRF versus a bone grafting material (DFDBA) found no significant differences between treatment groups.

Three studies found that the use PRF in combination with a bone-grafting material was superior to either PRF alone, or bone-grafting material alone.

It was similarly found that the supplemental use of PRF in combination with a barrier membrane was superior to barrier membrane alone. Probing pocket depth PPD reductions and Clinical attachment level CAL gains at intrabony defects sites were observed.

In a recent study, the additional use of PRF with enamel matrix derivative (EMD) found no differences between the test and control (EMD alone) groups.

Implant

Reduced bone height and width are the most common limitations for implant placement. To overcome these limitations, guided bone regeneration, alveolar ridge preservation, and sinus floor elevation were introduced.

Even though most of these techniques provide predictable outcomes, there is a demand to enhance wound healing and bone regeneration either after dental extraction or during implant placement.

Five studies related to PRF application during implant placement were included. Two RCTs assessed the impact of PRF prior to implant insertion and reported that PRF might enhance implant stability during the early phase of osseointegration.

Another study by Boora et al. 2015, showed less marginal bone loss with the use of PRF. However, this data is limited to implants with a follow up of 3 months. In a study done by Hehn et al., (2016) no effects on bone loss were observed when a PRF membrane was placed over the implant and they found a decrease in mucosa thickness after 3 months in the PRF group.

A study by Angelo et al., (2015) for implant placement combined with horizontal bone augmentation showed that PRF failed to affect insertion torque.

Overall, due to the heterogeneity of the outcome measures, it is difficult to draw a conclusion from PRF during implant placement.

PRF and pain

Two studies by Marenzi et al., (2015); and Temmerman et al., (2016) on patient reported pain outcomes measured using the visual analogue scale concluded that PRF significantly reduced pain sensations after 3 to 5 days. They noted significantly less pain in the PRF group up to the 21st day. Nevertheless, it has to be taken into account that both studies did not state whether the patients were adequately blinded.

There are numerous studies assessing PRF effect on pain with mandibular third molar extraction.

Advantages of using PRF

Some advantages are reported in the literature related to the use of PRF, such as the following:
- Its preparation is a simplified and efficient technique, with centrifugation in a single step, free and openly accessible for all clinicians.
- It is obtained by autologous blood sample.
- Minimized blood manipulation.
- It does not require the addition of external thrombin because polymerization is a completely natural process, without any risk of suffering from an immunological reaction.\(^{10}\)
- The natural fibrin framework of PRF with growth factors prolongs its activity for a longer period and stimulate tissue regeneration effectively.
- It can be used solely or in combination with bone grafts, depending on the purpose.
- Increases the healing rate of the grafted bone.
- It is an economical and quick option compared with recombinant growth factors when used in conjunction with bone grafts.
- Used as a membrane, it avoids a donor site surgical procedure and results in a reduction in patient discomfort during the early wound-healing period.
- The studies of PRF present it to be more efficient and with less controversies on its final clinical results when compared to PRP.\(^{4}\)

Disadvantages of using PRF

PRF may present some disadvantages as follows:
- The final amount available is low because it is autologous blood.\(^{4}\)
- The success of the PRF protocol depends directly on the handling, mainly, related to blood collection time and its transference for the centrifuge.\(^ {10}\)
- Need of using a glass-coated tube to achieve clot polymerization.\(^ {61}\)
- Possible refusal of treatment by the puncture required for blood collection.

Conclusion

The present knowledge confirms the therapeutic qualities of PRF as a biomaterials. However, despite the evident regenerative benefits of PRF, substantiation of its clinical applications is still limited. Consequently, there is a constraint for the rationalization of its use. Additional randomized controlled clinical trials are defensible to test the long-term benefits and ultimate outcomes associated with PRF.

Reference

49. Elgendy EA, Abo Shady TE. Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony

