

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume – 6, Issue – 3, June - 2023, Page No. : 256 – 288

Current Variants and Latest Trends in PRF : A Systematic Review

¹Dr. Deeksha D. Pai, Postgraduate student, Department of Periodontics, College of Dental Sciences, Davanagere, Karnataka -577004

²Dr. Pramod Tatuskar, Master of Dental Surgery (M.D.S), Reader, Department of Periodontics, College of Dental Sciences, Davanagere, Karnataka -577004

³Dr. Shobha Prakash, Master of Dental Surgery (M.D.S), Professor and Head, Department of Periodontics, College of Dental Sciences, Davanagere, Karnataka -577004

Corresponding Author: Dr. Deeksha D. Pai, Postgraduate student, Department of Periodontics, College of Dental Sciences, Davanagere, Karnataka -577004

Citation of this Article: Dr. Deeksha D. Pai, Dr. Pramod Tatuskar, Dr. Shobha Prakash, "Current Variants and Latest Trends in PRF : A Systematic Review", IJDSIR- June - 2023, Volume – 6, Issue - 3, P. No. 256 - 288.

Copyright: © 2023, Dr. Deeksha D. Pai, et al. This is an open access journal and article distributed under the terms of the creative common's attribution non-commercial License. Which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

Platelet rich fibrin (PRF) a platelet concentrate consisting of a fibrin matrix polymerized in a tetra molecular structure, with incorporation of platelets, leucocytes, cytokines, and circulating stem cells, is known currently for its favourable results in healing. Enormous research is carried out using PRF to assess various aspects such as chemical, mechanical, physical, histological, etc., with alterations in centrifugation protocols, additive factors, medium or chemicals during centrifugation to obtain adjunctive and desirable results for periodontal regeneration. This review aimed to study and describe the current variants and latest advancements of PRF by assessing available literature on PRF. An electronic databases of MEDLINE (PubMed) and Cochrane Database of Systematic Reviews were searched based on few inclusion criteria

and exclusion criteria: relevant articles from 2000 till 2023 were considered. Two reviewers march independently screened the titles and abstracts of the search results. Only studies that fulfilled the criteria were further assessed to synthesize the results. 24 articles in total that fulfilled the criteria is mentioned in this article with differing properties obtained, use in different periodontal surgeries, altered centrifugation protocols, the results obtained, etc. This review provides insight into current advances, trends, protocols, techniques, procedures for use of PRF in periodontics. With enormous literature and varied studies on PRF, a vast and promising scope in the future for PRF and its concentrates for its application in field of periodontics is seen by altering few protocols of PRF preparation.

Keywords: Platelet-rich fibrin, Growth factors, Platelet concentrates, Wound healing, Regeneration

Introduction

Periodontal disease (PD) is a common inflammatory oral diseases affecting gingival, cementum, alveolar bone and the teeth. Many techniques are aimed to combat and eliminate this disease and its infectious sources, reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past few decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, blood products and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues. One such material is Platelet rich fibrin (PRF)¹.

PRF consists of a fibrin matrix polymerized in a tetra molecular structure, with incorporation of platelets, leucocytes, cytokines, and circulating stem cells and is a platelet concentrate containing all the constituents of a blood sample which are favourable to healing and immunity obtained from centrifuged blood without any addition. PRF in the form of a platelet gel can be used in conjunction with bone grafts, which has several advantages, such as promoting wound healing, release of growth factors for bone growth and maturation, wound sealing and haemostasis, and imparting better handling properties to graft materials. It can also be used as a membrane².

Although PRF has gained tremendous momentum in recent years as natural blood derived growth factor, enormous research is still in process to obtain different desired properties from PRF in various aspects such as chemical, mechanical, physical, histological, etc. Studies are been carried out by altering its centrifugation protocols, adding other factors, medium or chemicals during centrifugation to obtain adjunctive and desirable results for periodontal regeneration³. There exists a great variability in the available literature and protocols on PRF.

Aims and objective

Hence this review article aimed to study and describe the current variants and latest advancements of PRF by assessing available literature on PRF.

Methodology

The electronic databases of MEDLINE (PubMed) and Cochrane Database of Systematic Reviews were searched based on few inclusion criteria discussed below:

- 1) Relevant articles from 2000 till march 2023;
- Articles in the English language with full-text digital copies were considered;
- Search strategy used a combination of the following keywords: "PRF", "RECENT ADVANCES PRF;
- 4) Only periodontal literature and articles.

Two reviewers independently screened the titles and abstracts of the search results.

The exclusion criteria:

- 1) Duplicate articles/ articles repeated;
- Articles published in other fields such as those from medical literature, oral surgery literature, etc;
- 3) Articles published before January, 2000;

Only studies that fulfilled the criteria were further assessed to synthesize the results.

Results

After considering the inclusion and exclusion criteria following results were obtained. A comprehensive computer-based search combined the following databases into one search with 24 articles in Pubmed, 0 in Cochrane Database of Systematic Reviews were considered and obtained from a total of 5,186 results in Pubmed , 3 in Cochrane Database of Systematic Reviews .

Figure 1 shows the selection criteria of literature that followed this process.

Table 1 shows the details of the search conducted.

Discussion

The platelet-rich fibrin (PRF) of Choukroun *et al.*^[1] is a new step in the therapeutic concept of platelet gel that does not require anticoagulants, thrombin, or any other gelling agent, which makes it no longer than natural blood centrifuged without additives^{28,29}. PRF is a second generation platelet concentrate from about four generation of platelet concentration known so far.

The history of PRF evolves around 1970 where first generation platelet concentrate known as PRP (Platelet Rich Plasma) was introduced along with fibrin glue. It was then followed by proposal of second generation platelet concentrate known as PRF (Platelet Rich Fibrin) by Dr. Joseph Choukron et al, 2001³¹. Later, A-PRF (Advanced PRF) by **Ghannati**,2014;³² A-PRF+ by Fujioka-Kobayashi et al.,2016³³, t-PRF (Titanium PRF) by Tunali et al, 2014³⁴;i-PRF (Injectable PRF) by Mourao et al, 2015³⁵ (figure 2); PRF lysates and CGF constituted the third generation. The fourth generation focus research on tissue engineering triangle with addition of stem cells. "Platelet-fibrinogen-thrombin mixtures" or "gelatin platelet - gel foam" are various names for the same proposed during 1975-79, no longer used now. The choice of form of PRF to be used is based on its clinical requirement, duration, ergonomics and its availability and its operability³⁰. It was found that C-PRF collected specifically from the buffy coat layer following higher centrifugation protocols exhibited an up to a threefold increase in growth factor release when compared with that exhibited by standard i-PRF. This significantly promoted higher gingival fibroblast migration, proliferation, gene expression, and collagen I synthesis⁴.

Due to the ability for the clinician to rapidly collect peripheral blood and concentrate blood-derived growth factors following centrifugation, platelet concentrates have long been considered a low-cost and easy-to-obtain source of natural growth factors with continued ongoing research. Numerous factors are known to affect fibrin clot formation and structure include genetic , acquired factors (such as abnormal concentration of thrombin and factor XIII in plasma, blood flow, oxidative stress, platelet activation, hyperglycemia, medications, and cigarette smoking), and other parameters (such as temperature, pH ,microgravity, reducing agents, concentration of chloride and calcium ions, etc)¹.

Advanced Platelet-Rich Fibrin (A-PRF+), Leukocyte Platelet-Rich Fibrin (L-PRF), and injectable Platelet-Rich Fibrin (i-PRF) when compared invitro was interpreted to have capacity to increase the osteogenic potential of osteoblast-like cells. A-PRF+ seems to have the highest potential for mineralization, while i-PRF seems to have the potential to enhance early cell differentiation. A-PRF+ and i-PRF could inhibit the growth of Aggregatibacter actinomycetemcomitans, more by i-PRF in chronic periodontitis patients. All plasma preparations inhibited Aa growth in the first 12 h after application, and i-PRF exhibited a significantly greater antimicrobial effect than A-PRF + at each time point²⁰. Results from the previous studies have also shown that T-PRF contained the maximum tensile strength (404.61 \pm 5.92 MPa) and modulus of elasticity $(151.9 \pm 6.92 \text{ MPa})$ however, A-PRF is the most favourable form of platelet concentrate in regenerative periodontal therapy as it has a sustained release of growth factors over time ¹⁵.

PRF is a known periodontal treatment entity in various procedures that includes periodontal regeneration¹, guided alveolar bone regeneration²¹, ridge (bone)

.

Page Z

implant augmentation before placement sinus augmentation²⁶, Miller's class I and II gingival recession defects/ root coverage procedures ^{22,24,27}, sinus augmentation⁹. etc. Also recent studies have recommended the use of PRF membranes for the treatment of gingival recession as an alternative to SCTGs²⁷. Results obtained from few studies showed that the successful clinical and radiographic results using A-PRF and i-PRF can be beneficial for bone augmentation of the alveolar ridge before implant placement. CAF is a predictable treatment for isolated Miller's class I and II recession defects²⁶. The addition of PRF membrane with CAF provides superior root coverage with additional benefits of gain in CAL and WKG at 6 months postoperatively²⁷. Studies have also shown that Polycaprolactone/Keratin/0.5Platelet-rich fibrin (PCL/Kr/PRF) fibrous scaffold fabricated through electrospinning process could be used for wound healing and skin regeneration and hence may be considered as wound dressing agent⁷.

Differing and conflicting results were also seen where no significant differences was seen The presence or absence of A-PRF showed in gingival fibroblast cells and osteosarcoma cells adhesion when PRF was compared with alloderm and mucograft membranes⁶.

The highest reported growth factor released from platelet concentrates was PDGF-AA followed by PDGF-BB, TGFB1, VEGF, and PDGF-AB. After 15–60 min incubation, PRP released significantly higher growth factors when compared to PRF and A-PRF, however A-PRF released the highest total growth factors and protein at later time points up to 10 days¹². Also studies have been performed using variations and different protocols to obtain PRF and showed that PRF clots obtained by utilizing the low-speed centrifugation speeds (~ 200 g for 8 min) produce clots that contained a higher concentration of evenly distributed platelets, secreted higher concentrations of growth factors over 10 day period and were smaller in size, irrespective of the centrifugation device utilized, whereas in silica-coated tubes platelet distribution was commonly more diffusive than in glass tubes. Interestingly, compared to centrifugation devices utilized, the centrifugation tubes used had a much greater impact on the final size outcome of PRF clots. It was found that the process for PRF tubes produced significantly greater-sized clots when compared to other commercially available tubes. The Salvin Dental tubes also produced significantly greater PRF clots when compared to the IntraLock tubes on each of the tested centrifugation devices³. Therefore, both blood-collection tube types and centrifugal conditions appeared to influence platelet distribution in the PRF matrix. However, better growth factor retention and release was contributed by platelets distributed in the deep regions of the PRF matrix³. Protocols of greater than 8 min at 400g led to no leukocyte accumulation in the upper PRF layers (found specifically within the buffy coat). Protocols at or below 200g were unable to effectively accumulate platelets/leukocytes. The optimal centrifugation speed and time for solid-PRF ranged between 400 and 700g for 8 min. Within the investigated ranges, a protocol of 700g for 8 min presented the highest yield of platelets/leukocytes evenly distributed throughout the upper PRF layers¹⁷.

One study demonstrated that cooling of liquid-PRF is able to extend the working properties by over 90 min and may represent as a useful clinical strategy¹⁶. Recently, evaluation of the centrifugation angle revealed greater entrapment of large cells, such as red blood cells, when centrifugation was changed from a fixed to a horizontal angle¹⁶. Also a study revealed that the

presence of fibrin nano-fiber structures as a constituent can provide a good substrate for cell attachments¹⁹.

With such heterogeneity present in literature pertaining to PRF and its actions, more studies should be focused to set a standard protocol to obtain a desired uniform result. More studies should be promoted and carried out to find the best results of PRF in the field of periodontics.

Conclusion

With enormous literature and varied studies on PRF, research is still ongoing to find advances in PRF. However, a vast and promising scope in the future for PRF and its concentrates for its application in field of periodontics is still seen. Future research should be focused on incorporating various advances such as laser, stem cell therapy, nanotechnology, robotics, artificial intelliegence etc with PRF concentrates and examining its property. A universally accepted and uniform PRF concentrate that serves as the miracle drug for periodontal regenerative procedure can hence be obtained.

References

- Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater. 2020 Feb 28;5(2):297-308.
- Saluja H, Dehane V, Mahindra U. Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg. 2011 Jan;1(1):53-7.
- Miron RJ, Xu H, Chai J, Wang J, Zheng S, Feng M, Zhang X, Wei Y, Chen Y, Mourão CFAB, Sculean A, Zhang Y. Comparison of platelet-rich fibrin (PRF) produced using 3 commercially available centrifuges at both high (~700 g) and low (~200 g) relative centrifugation forces. Clin Oral Investig. 2020 Mar;24(3):1171-1182

- Fujioka-Kobayashi M, Katagiri H, Kono M, Schaller B, Zhang Y, Sculean A, Miron RJ. Improved growth factor delivery and cellular activity using concentrated platelet-rich fibrin (C-PRF) when compared with traditional injectable (i-PRF) protocols. Clin Oral Investig. 2020 Dec;24(12):4373-4383
- Miron RJ, Xu H, Chai J, Wang J, Zheng S, Feng M, Zhang X, Wei Y, Chen Y, Mourão CFAB, Sculean A, Zhang Y. Comparison of platelet-rich fibrin (PRF) produced using 3 commercially available centrifuges at both high (~ 700 g) and low (~ 200 g) relative centrifugation forces. Clin Oral Investig. 2020 Mar;24(3):1171-1182.
- Reisie BH, Farhad SZ, Sadeh SA. Evaluation and comparison number of gingival fibroblast and osteosarcoma cell (MG-63 cell line) adhesive to mocugraft, alloderm, and collagen membrane with or without advanced platelet-rich fibrin. Dent Res J (Isfahan). 2021 Oct 21;18:82.
- Mirhaj M, Tavakoli M, Varshosaz J, Labbaf S, Jafarpour F, Ahmaditabar P, Salehi S, Kazemi N. Platelet rich fibrin containing nanofibrous dressing for wound healing application: Fabrication, characterization and biological evaluations. Biomater Adv. 2022 Mar;134:112541.
- Hariprasad R, Suganya TL, John SS, Raj PR, Kuriakose F, Anoop VN. Assessment of Growth Factors with Three Different Platelet Preparations, Namely Platelet-Rich Fibrin, Platelet-Rich Plasma, and Lyophilized Platelet: An *In vitro* Study. J Pharm Bioallied Sci. 2021 Nov;13(Suppl 2):S1696-S1699. doi: 10.4103/jpbs.jpbs_358_21. Epub 2021 Nov 10.
- 9. Miron RJ, Pikos MA. Sinus Augmentation Using Platelet-Rich Fibrin With or Without a Bone Graft:

Page Z

What Is the Consensus? Compend Contin Educ Dent. 2018 Jun;39(6):355-361; quiz 362.

- Castro AB, Andrade C, Li X, Pinto N, Teughels W, Quirynen M. Impact of g force and timing on the characteristics of platelet-rich fibrin matrices. Sci Rep. 2021 Mar 16;11(1):6038.
- Tsujino T, Masuki H, Nakamura M, Isobe K, Kawabata H, Aizawa H, Watanabe T, Kitamura Y, Okudera H, Okuda K, Nakata K, Kawase T. Striking Differences in Platelet Distribution between Advanced-Platelet-Rich Fibrin and Concentrated Growth Factors: Effects of Silica-Containing Plastic Tubes. J Funct Biomater. 2019 Sep 17;10(3):43.
- Kobayashi E, Flückiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, Miron RJ. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016 Dec;20(9):2353-2360.
- Agrawal AA. Evolution, current status and advances in application of platelet concentrate in periodontics and implantology. World J Clin Cases. 2017 May 16;5(5):159-171.
- Pavlovic V, Ciric M, Jovanovic V, Trandafilovic M, Stojanovic P. Platelet-rich fibrin: Basics of biological actions and protocol modifications. Open Med (Wars). 2021 Mar 22;16(1):446-454.
- Ravi S, Santhanakrishnan M. Mechanical, chemical, structural analysis and comparative release of PDGF-AA from L-PRF, A-PRF and T-PRF - an in vitro study. Biomater Res. 2020 Sep 11;24:16.
- 16. Miron RJ, Horrocks NA, Zhang Y, Horrocks G, Pikos MA, Sculean A. Extending the working properties of liquid platelet-rich fibrin using chemically modified PET tubes and the Bio-Cool

device. Clin Oral Investig. 2022 Mar;26(3):2873-2878.

- Miron RJ, Chai J, Fujioka-Kobayashi M, Sculean A, Zhang Y. Evaluation of 24 protocols for the production of platelet-rich fibrin. BMC Oral Health. 2020 Nov 7;20(1):310.
- Dos Santos RF, Araújo Peres JA, Queiroz MS. Advances in separation methods for the use of platelet-rich fibrin in tissue repair: an integrative review. Gen Dent. 2023 Mar-Apr;71(2):65-69.
- Farmani AR, Nekoofar MH, Ebrahimi Barough S, Azami M, Rezaei N, Najafipour S, Ai J. Application of Platelet Rich Fibrin in Tissue Engineering: Focus on Bone Regeneration. Platelets. 2021 Feb 17;32(2):183-188.
- Kosmidis K, Ehsan K, Pitzurra L, Loos B, Jansen I. An in vitro study into three different PRF preparations for osteogenesis potential. J Periodontal Res. 2023 Mar 21.
- Alexandru BC, Popa M, Oana L, Bondor CI, Georgiu C, LazĂr CS, Şovrea AS, Constantin AM, Dogaru G. Bone Morphogenetic Protein 7 Expression in Alveolar Bone Addition With Autologous Blood, Lyophilized Bone and Atelocollagen. In Vivo. 2021 Mar-Apr;35(2):871-881.
- Collins JR, Cruz A, Concepción E, López C, Hou W, Romanos GE. Connective Tissue Graft vs Platelet-rich Fibrin in the Treatment of Gingival Recessions: A Randomized Split-mouth Case Series. J Contemp Dent Pract. 2021 Apr 1;22(4):327-334.
- 23. Pham TAV, Tran TTP. Antimicrobial effect against *Aggregatibacter actinomycetemcomitans* of advanced and injectable platelet-rich fibrin from patients with periodontal diseases versus

Page **Z**

.

periodontally healthy subjects. J Oral Biol Craniofac Res. 2023 Mar-Apr;13(2):332-336. doi: 10.1016/j.jobcr.2023.02.011. Epub 2023 Mar 7.

- 24. Dandekar SA, Deshpande NC, Dave DH. Comparative evaluation of human chorion membrane and platelet-rich fibrin membrane with coronally advanced flap in treatment of Miller's class I and II recession defects: A randomized controlled study. J Indian Soc Periodontol. 2019 Mar-Apr;23(2):152-157.
- Gutiérrez DA, Hinojosa JP, Pava JP, Dorado AIR. Root Coverage with Platelet-Rich Fibrin in Miller's Class I, III, and IV Gingival Retractions. Contemp Clin Dent. 2019 Apr-Jun;10(2):382-384.
- 26. Chenchev IL, Ivanova VV, Neychev DZ, Cholakova RB. Application of Platelet-Rich Fibrin and Injectable Platelet-Rich Fibrin in Combination of Bone Substitute Material for Alveolar Ridge Augmentation - a Case Report. Folia Med (Plovdiv). 2017 Sep 1;59(3):362-366.
- 27. Padma R, Shilpa A, Kumar PA, Nagasri M, Kumar C, Sreedhar A. A split mouth randomized controlled study to evaluate the adjunctive effect of platelet-rich fibrin to coronally advanced flap in Miller's class-I and II recession defects. J Indian Soc Periodontol. 2013 Sep;17(5):631-6.
- Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunite' en paro-implantologie: le PRF. Implantodontie 2001;42:55-62. (in French)
- Toffler M, Toscano N, Holtzclaw D, Del Corso M, Dohan Ehrenfest D. Introducing Choukroun's platelet rich fibrin (PRF) to the reconstructive surgery milieu. J Impl Adv Clin Dent 2009;1:21-32.
- 30. Kawase, Tomoyuki & Mubarak, Suliman & Mourao, Carlos Fernando. (2020). The Platelet Concentrates Therapy: From the Biased Past to the

AnticipatedFuture.Bioengineering.7.82.10.3390/bioengineering7030082.

- Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e45–50.
- 32. Ghanaati S, Booms P, Orlowska A, Kubesch A, Lorenz J, Rutkowski J, et al. Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014;40(6):679–89. 10.1563/aaid-joi-D-14-00138.
- 33. Fujioka-Kobayashi M, Miron RJ, Hernandez M, Kandalam U, Zhang Y, Choukroun J. Optimized platelet-rich fibrin with the low-speed concept: growth factor release, biocompatibility, and cellular response. J Periodontol. 2017;88(1):112–21. 10.1902/jop.2016.160443.
- Tunalı M, Özdemir H, Küçükodacı Z, Akman S, Yaprak E, Toker H, et al. A novel platelet concentrate: titanium-prepared platelet-rich fibrin. Biomed Res Int. 2014;2014:209548. 10.1155/2014/209548.
- 35. Mourão CF, Valiense H, Melo ER, Mourão NB, Maia MD. Obtention of injectable platelets richfibrin (i-PRF) and its polymerization with bone graft: technical note. Rev Col Bras Cir. 2015;42(6):421–3. 10.1590/0100-69912015006013.

.....

Legend Tables and Figures

Figure 1: Selection process PRISMA flow chart

A-PRF	 1500 RPM for 14 minutes in sterile plain glass based vaccum tube (Ghanaati, 2014)
T-PRF	 2800 RPM for 12 minutes in tinanium tubes (Tunali et al, 2014)
i-PRF	 700 RPM for 3 minutes in plastic tubes (Mourao, 2015)
A-PRF+	 1300 RPM for 8 minutes in sterile plain glass based vaccum tube (Fujoka- Kobayashi, 2016)
L-PRF	 2700 RPM for 12 minutes in a sterile glass coated tube (Choukroun, 2004)

Figure 2: Various forms of	platelet	rich fibrin	and its protocol
----------------------------	----------	-------------	------------------

Sn.	Author	Title	Objective	Methodology	Results	Conclusion
1	Dos	Advances	This study	A descriptive	plasma preparations	The evolution in protocols
	Santos	in	sought to	research method was	originating from the	has resulted in various
	RF et	separation	perform an	adopted for assessing	centrifugation of	forms of PRF with
	al,	methods	integrative	the literature on	blood samples, such	different components: (1)
	2023.18	for the	literature	processes for	as platelet-rich	a membrane that
		use of	review to	obtaining PRF, and	plasma (PRP) and	aggregates platelets and
		platelet-	compile	articles indexed in the	platelet-rich fibrin	leukocytes (L-PRF); (2) a
		rich fibrin	the	MEDLINE database	(PRF), have proven	PRF rich in growth
		in tissue	available	were searched.	useful for the	factors and cytokines,
		repair: an	data on		treatment of gingival	known as advanced PRF
		integrativ	different		recession due to their	(A-PRF); (3) a liquid
		e review	protocols		rich concentration of	phase called injectable
			for		cells and cytokines	PRF (I-PRF) that shows
			generating		fundamental in the	greater cell accumulation
			plasma		mechanisms of both	than L-PRF; (4) A-PRF
			preparation		soft tissue and hard	plus (A-PDF+), which
			s and their		tissue repair.	improved the release of

.

 $_{\text{Page}}264$

. .

.....

.

	 in diantiana	The literature merian	anomali fontana fon a
	indications	The interature review	growth factors for a
	, benefits,	showed that changes	period of 10 days; and (5)
	and results.	in the PRF protocols	concentrated PRF (C-
		for obtaining blood	PRF) obtained by
		concentrates have led	progressive pipetting,
		to better isolation of	which has the greatest cell
		cells and growth	accumulation among all
		factors and more	of the types of platelet
		promising results in	aggregates. Subsequently,
		tissue repair.	the observation that the
			speed of centrifugation
			influenced the acquisition
			of specific cells resulted
			in the development of the
			low-speed centrifugation
			concept. Then, it was
			determined that reduction
			of the relative
			centrifugation forces
			significantly increased the
			number of platelets
			leukocytes and growth
			factors Recently
			evaluation of the
			contribugation angle
			revealed greater
			entrement of large cells
			entrapment of large cells,
			such as red blood cells,
			when centrifugation was
			changed from a fixed to a
			horizontal angle. Tissue
			bioengineering studies are
			allowing for significant
			advances in the process of
			obtaining blood
			components and enabling

						their use for tissue repair
						with greater predictability
						and less morbidity.
2	Kosmi	An in	То	A-PRF+, L-PRF, and	In osteoblast-like	The three PRF
	dis K	vitro	investigate	i-PRF were prepared	cells cultured with	preparations seem to have
	et al,	study into	the effect	from six male donors	conditioned medium,	the capacity to increase
	2023 20	three	of	and pre-cultured with	the A-PRF+	the osteogenic potential of
		different	Advanced	10 mL culture	conditioned medium	osteoblast-like cells. A-
		PRF	Platelet-	medium for 6 days. 5	induced more	PRF+ seems to have the
		preparatio	Rich Fibrin	x 10^3 cells/ml	mineralization and	highest potential for
		ns for	(A-PRF+),	osteoblasts from the	calcium production	mineralization, while i-
		osteogene	Leukocyte	osteoblast cell line	after 28 days of	PRF seems to have the
		sis	Platelet-	(U2OS) were seeded	culturing compared	potential to enhance early
		potential.	Rich Fibrin	and cultured either	with the control (p $<$	cell differentiation.
			(L-PRF),	with conditioned	.05). No significant	
			and	medium derived from	differences were	
			injectable	the different PRF	found in the extent of	
			Platelet-	conditions or with	cell proliferation	
			Rich Fibrin	regular culture	between the different	
			(i-PRF) on	medium. At five	conditions. RUNX-2	
			osteogenes	different time points	and osteonectin	
			is of a	(0, 7, 14, 21, 28	mRNA expression in	
			human	days), the osteogenic	the cells were lower	
			osteoblast-	capacity of the cells	in all PRF-stimulated	
			like cell	was assessed with	cultures compared	
			line in	Alizarin Red S to	with control at	
			vitro.	visualize	different time points.	
				mineralization. Also	The i-PRF-	
				in these cells, the	conditioned medium	
				calcium concentration	induced more ALP	
				and alkaline	activity (p < .05)	
				phosphatase activity	compared with	
				were investigated.	control and	
				Using qPCR, the	osteoblasts-like cells	
				expression of alkaline	differentiated more	
				phosphatase,	compared with	

. . . .

.

.........

				osteocalcin,	osteoblasts cultured	
				osteonectin, ICAM-1,	with L-PRF.	
				RUNX-2, and		
				collagen 1a was		
				assessed.		
3	Pham	Antimicro	. This	Blood samples were	A-PRF+ and i-PRF	A-PRF+ and i-PRF in all
	TAVet	bial effect	study	collected from	from each patient	three patient groups could
	al,	against A	aimed to	periodontally healthy	groups interfered	inhibit the growth of
	2023.23	ggregatib	compare	individuals, patients	with Aa's ability to	Aa in vitro, and i-PRF
		acter	the	with gingivitis, or	form biofilm on the	from patients with
		actinomyc	antimicrob	patients with	test tube surface, and	periodontitis exhibited a
		etemcomit	ial effects	periodontitis to	the effect of i-PRF	more significant effect
		ans of	of these	prepare A-PRF+ and	was significantly	than PRF from the other
		advanced	PRF	i-PRF. The	different among the	groups.
		and	materials	antibacterial capacity	patient groups. In	
		injectable	against the	of these materials was	contrast, these	
		platelet-	periodontal	evaluated through	plasma preparation	
		rich fibrin	pathogenic	antibiofilm formation,	had a weak impact	
		from	bacterium	biofilm susceptibility,	on mature biofilm.	
		patients	Aggregatib	and the time-kill	For products from	
		with	acter	assay over a 48-h	the gingivitis and	
		periodont	actinomyce	period.	periodontitis groups,	
		al	temcomita		these effects were	
		diseases	ns (Aa) in		significantly stronger	
		versus	patients		for i-PRF than A-	
		periodont	with		PRF+ . All plasma	
		ally	different		preparations	
		healthy	periodontal		inhibited Aa growth	
		subjects.	conditions.		in the first 12 h after	
					application, and i-	
					PRF exhibited a	
					significantly greater	
					antimicrobial effect	
					than A-PRF + at each	
					time point.	
4	Miron	Extending	first aim of	In total, 30	The findings from	Cooling of blood

	RJ et	the	the present	participants enrolled	the present study	following centrifugation
	al.	working	study was	in this study. From	demonstrated that the	represented a 270%
	2022.16	properties	to	each patient, four	chemically modified	improvement in working
		of liquid	investigate	tubes of liquid-PRF	PET tubes performed	properties of liquid-PRF.
		platelet-	the liquid	were drawn, two	37% better than the	Optimization of liquid-
		rich fibrin	consistenc	standard white	control tubes	PRF tubes utilizing
		using	y of liquid-	Vacuette tubes and	(extended the	chemically modified
		chemicall	PRF	two blue chemically	working properties of	hydrophobic PET tubes
		у	utilizing	modified	liquid-PRF by over	also delayed the clotting
		modified	both	hydrophobic tubes.	20 min). Most	process by 37%. Patient
		PET tubes	standard	Following	surprisingly, tubes	gender and age had little
		and the	and	centrifugation at 700	kept in the cooling	relevance on liquid-PRF.
		Bio-Cool	chemically	RCF-max for 8 min	device demonstrated	Clinical relevance: The
		device	modified	in a Bio-PRF	an average of 90 min	present findings
			PET	horizontal centrifuge,	greater working time	demonstrate for the first
			plastic	one white and one	(270%)	time that cooling of
			tubes. This	blue tube were kept	improvement). While	liquid-PRF is able to
			study also	upright at room	patients living at	extend the working
			investigate	temperature, while	altitude did	properties of liquid-PRF
			d for the	the other white and	significantly improve	by over 90 min. Thus for
			first time	blue tube were placed	the clotting ability of	clinicians performing
			the use of a	within the cooling	liquid-PRF, no	longer clinical
			cooling	device. Thereafter,	differences were	procedures, the cooling of
			device	the liquid-PRF layers	observed when	blood may represent a
			(Bio-Cool)	were monitored over	comparing male vs	viable strategy to improve
			to extend	time until clotting	female or younger vs	the working time of
			the liquid	occurred. Patient	older patients in	liquid-PRF in clinical
			working	gender, age, and	liquid-PRF clotting	practice.
			properties	altitude above sea	times.	
			of liquid-	level (+ 5000 ft) were		
			PRF.	recorded and		
				compared for clotting		
				times.		
5	Mirhaj	Platelet	to evaluate	A range of techniques	by the addition of	Overall, the data
	M et	rich fibrin	the wound	were utilized to fully	only 0.5% w/v PRF to	presented in this study
	al,	containin	healing	characterize the	PCL/Kr sample, the	greatly suggest that the

........

.

2022.7	g	process	chemical.	physical	fibers diameter	PCL/Kr/0.5PRF wound
	nanofibro	using	and	biological	decreased from	dressing could be a
	us	Polycaprol	properties	of the	193.93 ± 64.80 nm to	suitable candidate for
	dressing	actone/Ker	resultant st	ructure.	65.98 ± 14.03 nm,	wound healing and skin
	for wound	atin/Platele			and the stress at	regeneration.
	healing	t-rich			break demonstrated a	
	applicatio	fibrin			18.27% increase in	
	n:	(PCL/Kr/P			comparison to the	
	Fabricatio	RF)			PCL sample. The	
	n,	fibrous			PCL/Kr/0.5PRF	
	characteri	scaffold			scaffold showed	
	zation and	fabricated			more antibacterial	
	biological	through			activity against	
	evaluation	electrospin			gram-positive and	
	S	ning			gram-negative	
		process.			bacteria than PCL/Kr	
					sample. Based on	
					enzyme-linked	
					immunosorbent	
					assays, the	
					PCL/Kr/0.5PRF	
					sample revealed an	
					independent release	
					of VEGF and PDGF	
					for 7 days. Cell	
					viability studies	
					demonstrated non-	
					cytotoxic nature of	
					PRF-containing	
					dressings. Also,	
					chorioallantoic	
					membrane (CAM)	
					assay was performed	
					to evaluate the	
					angiogenic potential	
					of the wound	

. . .

					dressings. The in	
					vivo assessments	
					also showed that	
					PCL/Kr/0.5PRF	
					accelerated the	
					wound healing	
					process in terms of	
					collagen deposition	
					and the formation of	
					skin appendages	
					which was	
					comparable to the	
					normal skin.	
6	Haripr	Assessme	at	Autologous blood for	Results In the	With the various recent
	asad R	nt of	investigati	preparing the platelet	quantitative analysis	advances in technologies
	et al,	Growth	ng the	preparations was	of growth factors	for preparing these
	2021. ⁸	Factors	levels of	obtained from healthy	LPL showed	platelet concentrates this
		with	growth	donors aged between	significant increase	can be widely used in
		Three	factors in	25 to 35 years. The	of the liberation of	clinical practice more
		Different	three	samples were then	growth factors	accurate in the future.
		Platelet	different	divided into three	compared to PRP	
		Preparatio	platelet	experimental groups.	and PRF.	
		ns,	preparation	The preparation of		
		Namely	s namely	PRP was done with		
		Platelet-	platelet	the addition of		
		Rich	rich	anticoagulant and the		
		Fibrin,	plasma	PRF is prepared		
		Platelet-	(PRP),	without adding it. The		
		Rich	platelet	platelet counts in the		
		Plasma,	rich fibrin	blood were analyzed		
		and	(PRF) and	and the growth		
		Lyophiliz	lyophilized	factors were		
		ed	platelets.	quantitatively		
		Platelet:		measured using		
		An In		ELISA reader. The		
		vitro Stud		statistical analysis		
	1					

. .

		у		was performed by		
				using the Chi square		
				test.		
7	Pavlov	Platelet-	The			It summarizes the
	ic V,	rich	current			evolution of platelet
	Ciric	fibrin:	article			concentrates and biologic
	M et	Basics of	intends to			properties of different
	al,	biological	clarify the			modifications of PRF
	2021.14	actions	relevant			procedure.
		and	advances			*
		protocol	about			
		modificati	physiologi			
		ons.	cal role of			
			certain			
			PRF			
			component			
			s and to			
			provide			
			insight into			
			the new			
			developme			
			ntal			
			approach.			
8	Reisie	Evaluatio	to evaluate	In this	In the presence of A-	A-PRF was effective on
	BH et.	n and	the effect	experimental in	PRF, there was a	fibroblast adhesion to the
	al,	compariso	of A-PRF	<i>vitro</i> study, three	significant higher	collagen membrane,
	2021.6	n number	on the	collagen, alloderm,	osteoblast adhesion	which is similar to its
		of	adhesion	and mucograft	to collagen	absence. A-PRF was also
		gingival	of gingival	membranes were	membrane compared	found to be very effective
		fibroblast	fibroblast	studied, which were	to alloderm and	on the adhesion of
		and	cells and	cut into four 5 mm \times	mucograft	fibroblast cells to the
		osteosarc	osteosarco	5 mm pieces and	membranes (P <	collagen membrane, and
		oma cell	ma cells to	placed in the bottom	0.001). In the	in its absence, even less
		(MG-63	different	of a 24-well culture	absence of A-PRF,	adhesion was observed
		cell line)	membrane	medium. One	adhesion of	compared to the other
		adhesive	s.	milliliter of A-PRF	osteoblasts to	membranes. The presence

...........

. .

		to		was added to two	collagen membrane	or absence of A-PRF
		mocugraft		wells from each	was significantly	showed no significant
		,		group and the other	higher than alloderm	differences in both cells'
		alloderm,		two wells remained	and mucograft $(P =$	adhesion for alloderm and
		and		without A-PRF. The	0.019). Moreover, in	mucograft membranes.
		collagen		gingival fibroblasts	the presence of A-	
		membran		and osteosarcoma	PRF, fibroblast	
		e with or		cells were	adhesion to collagen	
		without		individually added to	membrane was	
		advanced		each well. The cell	significantly higher	
		platelet-		adhesion was studied	than alloderm and	
		rich fibrin		using an electron	mucograft	
				microscope after 24	membranes (P <	
				h. The data were	0.001). Furthermore,	
				analyzed by	in the absence of A-	
				independent <i>t</i> -test,	PRF, no significant	
				one-way analysis of	difference was found	
				variance, and least	among the study	
				significant difference	groups ($P = 0.830$).	
				test.		
9	Castro		This in-	Release of growth	No statistically	Timing in the preparation
	AB et		vitro study	factors, macroscopic	significant	process had a significant
	al,		aimed to	dimensions, cellular	differences amongst	impact. Adaptation of
	202110		compare	content and	the three PRF	RCF only had a minimal
			the	mechanical properties	modifications could	impact on the final
			biological	of the respective	be observed, neither	characteristics of PRF
			and	membranes, prepared	in their release of	membranes.
			physical	from blood of the	growth factors or the	
			characteris	same individual were	cellular content, nor	
			tics of	explored.	in clot/membrane	
			three types	Furthermore, the	dimensions. The	
			of PRF	impact of timing	difference between	
			membrane	(blood draw-	both centrifuges were	
			s using two	centrifugation and	negligible when the	
			different	centrifugation-	same g-force was	
			centrifuges	membrane	used. A lower g-	
		1	-		Ũ	

...

			with	preparation) was	force, however,	
			adapted	assessed	reduced membrane	
			relative	morphologically as	tensile strength.	
			centrifugal	well as by electron		
			forces	microscopy scanning.		
			(RCF):			
			leucocyte-			
			and			
			platelet-			
			rich fibrin,			
			advanced			
			platelet-			
			rich fibrin,			
			and			
			advanced			
			platelet-			
			rich			
			fibrin ⁺ .			
10	Farma	Applicati	This study		Bone tissue	The most important
	ni AR,	on of	attempts to		engineering (BTE) is	reason for using platelet-
	et al,	Platelet	review the		a strategy for	rich formulations in bone
	202119	Rich	history,		reconstructing bone	regeneration is based on
		Fibrin in	structure,		lesions, which is	releasing growth factors
		Tissue	and		rapidly developing in	from alpha granules in
		Engineeri	biology of		response to higher	platelets, which can
		ng: Focus	platelet-		demands for bone	induce osteogenesis.
		on Bone	rich fibrin		repairing. Recently,	Moreover, the presence of
		Regenerat	(PRF) as		this method, along	fibrin nano-fiber
		ion.	well as in		with the emergence	structures as a constituent
			vitro, pre-		of functionally	can provide a good
			clinical,		graded,	substrate for cell
			and		biocompatible and	attachments.
			clinical		biodegradable	
			studies on		materials, has been	
			the use of		expanded. Moreover,	
			PRF for		scaffolds with	

.......

.

.

.....

• • • •			•••••	•••••	•••••	
			bone		chemical, physical	
			regeneratio		and external patterns	
			n.		have induced bone	
					regeneration.	
					However, the	
					maintenance of	
					healthy bone and its	
					regeneration in the	
					human body needs a	
					series of complex	
					and accurate	
					processes. Hence,	
					many studies have	
					been accompanied	
					for reconstructing	
					bone by using blood-	
					derived biomaterials,	
					especially platelet-	
					rich fabricates.	
11	Alexa	Bone	to evaluate	Chronic marginal	The untreated sheep	The current composite
	ndru	Morphoge	alveolar	periodontitis was	showed	system meets all the
	BC et	netic	bone	induced in sheep; the	inflammation,	necessary conditions for
	al,	Protein 7	addition	intervention group	periodontal ligament	promising guided alveolar
	2021 ²¹ .	Expressio	and bone	received bone	destruction, remnants	bone regeneration.
		n in	morphogen	addition as	of calculus and	
		Alveolar	etic protein	periodontal therapy,	bacterial plaque as	
		Bone	7 (BMP7)	using a composite	well as foreign	
		Addition	expression	system with	bodies in the	
		With	using an	lyophilized bovine	desmodontal space,	
		Autologo	improved	bone enriched with	without sings of	
		us Blood,	autologous	atelocollagen type 1,	repair. In the treated	
		Lyophiliz	and	platelet-rich plasma	sheep,	
		ed	xenogeneic	and advanced	fibroblasts/fibrosis,	
		Plasma.	biomaterial	platelet-rich fibrin	cartilage and/or new	
				(A-PRF). Six weeks	bone, cellular	
				after the intervention,	cementum and	

dentoalveolar the desmodontium, along structures with remnants of were evaluated biomaterial with using hematoxylin-eosin various degrees of and cellularity were immunohistochemical observed. In the staining, to evaluate untreated group, the bone addition and presence of BMP7 BMP7 expression. was found in osteoblasts and osteocytes while in the treated group, it was mainly found in the biomaterial remnants. while immunohistochemica 1 staining was less intense in the newly formed osteoperiodontal tissues. Quantitative analysis using the Mann-Whitney U-test showed highly statistically significant differences between the groups. 12 Within the limitations of Collin Connectiv The aim of Ten healthy patients GR, PD, and GT e Tissue this exhibiting mandibular differences between the present study, it can JR. study S Graft or maxillary Miller the test and control concluded VS was be that et al, to 2021 22 Plateletlocalized evaluate class I and II were groups at 28 weeks gingival rich the treated with PRF + were not statistically recessions could be significant. GR was Fibrin in outcome of CAF or DeCTG + successfully treated with the PRF CAF. GR, probing 3.30 ± 1.25 mm and CAF + PRF or CAF + Treatment combined depth (PD), $3.00 \pm 1.63 \text{ mm}$ DeCTG. and

		of	with a	gingival thickness	(control vs test)	Clinical
		Gingival	CAF (test)	(GT) were evaluated	group (baseline) and	significance: This study
		Recession	compared	at baseline, 6 weeks,	-0.10 ± 0.32 vs -0.20	suggests that PRF
		s: A	to de-	and 28 weeks	\pm 0.42 mm (7	membrane may be an
		Randomiz	epithelializ	postoperatively.	months),	alternative and valid graft
		ed Split-	ed		respectively.	material for treating
		mouth	connective			localized gingival
		Case	tissue graft			recessions Miller class I
		Series.	(DeCTG)			and II.
			+ CAF			
			(control)			
			for GR			
			coverage.			
13	Miron	Evaluatio	The aim of	All protocols were	In general, platelets	Within the investigated
	RJ et	n of 24	this study	compared utilizing a	could more easily	ranges, a protocol of 700g
	al,	protocols	was to	recent method to	accumulate in the	for 8 min presented the
	202017	for the	evaluate 24	quantify cells in PRF	upper 4 layers when	highest yield of
		productio	protocols	in 1 mL sequential	compared to	platelets/leukocytes
		n of	for the	layers pipetted from	leukocytes owing to	evenly distributed
		platelet-	production	the upper layer	their lower cellular	throughout the upper PRF
		rich	of platelet	downwards until all	density. Protocol	layers.
		fibrin.	rich fibrin	10 mL were	time seemed to have	
			(PRF)	harvested. In total,	a greater impact on	
			produced	960 complete blood	the final cell layer	
			via	counts (CBCs) were	separation when	
			horizontal	investigated. Both	compared to the	
			centrifugat	solid and liquid-based	effect of speed.	
			ion to	PRF protocols were	Protocols of greater	
			better	investigated	than 8 min at 400g	
			understand	following 24	led to no leukocyte	
			cell	protocols involving 6	accumulation in the	
			separation	relative centrifugal	upper PRF layers	
			following	force (RCF) values	(found specifically	
			protocols	(100, 200, 400, 700,	within the buffy	
			at various	1000 and 1200g) at 4	coat). Protocols at or	
			times and	centrifugation times	below 200g were	

			speeds.	(3, 5, 8 and 12 min).	unable to effectively	
					accumulate	
					platelets/leukocytes.	
					The optimal	
					centrifugation speed	
					and time for solid-	
					PRF ranged between	
					400 and 700g for 8	
					min. It was noted	
					that variability in	
					patient baseline	
					platelet/leukocyte/ery	
					throcyte counts	
					(hematocrit)	
					significantly affected	
					cell layer separation.	
					This finding was	
					more pronounced at	
					lower centrifugation	
					speeds.	
14	Ravi	Mechanic	to	Blood samples were	On comparing the	Results from the present
	S, et	al,	correlate	drawn from 2 male	three PRF	study indicate that A-PRF
	al.	chemical.	the release	and 3 female	membranes, it was	is the most favourable
	202015	structural	profile of	systemically healthy	found that T-PRF	form of platelet
		analysis	PDGF-AA	patients between 20	contained the	concentrate in
		and	from	and 25 years of age	maximum tensile	regenerative periodontal
		comparati	various	who were about to	strength (404.61 ±	therapy as it has a
		ve release	forms of	undergo periodontal	5.92 MPa) and	sustained release of
		of PDGF-	platelet	regeneration for PRF	modulus of elasticity	growth factors over time.
		AA from	concentrat	preparation The	(151.9 + 6.92 MPa)	
		L-PRF	es (L-PRF	blood sample was	Statistically	
		A-PRF	A-PRF T-	immediately	significant	
		and T_{-}	PRF)	centrifuged using a	differences between	
		PRF _ an	hased on	table ton centrifuge	the three groups were	
		in vitro	their	(Remi R/C) at 1060	found on comparing	
		etudy	machanical	rnm (208 x g) for 14	the groups for their	
		study.	mechanical	1pm (206 x g) 10r 14	the groups for their	

				i
	and	min for A-PRF	mechanical	
	chemical	preparation, 1960	properties. In the	
	properties.	rpm (708 x g) for 12	degradation test, it	
		min for L-PRF	was found that the	
		preparation and 1960	maximum amount of	
		rpm (708 x g) for 12	degradation was	
		min in titanium tubes	found in L-PRF	
		for T-PRF	(85.75%), followed	
		preparation. Tensile	by A-PRF (84.18%)	
		test was performed	and the least was	
		using universal	found in T-PRF	
		testing machine. The	(82.27%). T-PRF	
		in vitro degradation	released the highest	
		test of the prepared	amount of PDGF-AA	
		PRF membranes were	(6060.4 pg/ml) at	
		conducted by placing	early time points	
		the PRF membrane in	when compared to	
		10 ml of pH 7.4 PBS	A-PRF (5935.3	
		on an orbital shaker	pg/ml). While T-PRF	
		set at 50 rpm. SEM	had rapid release of	
		evaluation of the PRF	PDGF-AA, A-PRF	
		membrane was done	had a sustained	
		under both low and	release of growth	
		high magnification.	factors released at	
		In order to determine	later time points.	
		the amount of		
		released growth		
		factor PDGF-AA at		
		15 min, 60 min, 8 h, 1		
		day, 3 days, and 10		
		days, samples were		
		placed into a shaking		
		incubator at 37 °C to		
		allow for growth		
		factor release into the		
		culture media.		

15	Fujiok	Improved	Due to	The upper 1-ml layer	At all time periods, a	It was found that C-PRF
	a-	growth	these	collected through	significant increase	collected specifically
	Kobay	factor	previous	standard i-PRF	in growth factor	from the buffy coat layer
	ashi	deliverv	findings, a	protocols at low	release was observed	following higher
	Met.	and	novel	centrifugation speeds	in C-PRF. In	centrifugation protocols
	A1.202	cellular	harvesting	was compared with 1	particular, the release	exhibited an up to a
	0.4	activity	technique	mL of C-PRF	of PDGF-AA. TGF-	threefold increase in
		using	was	collected from the	β1. and EGF	growth factor release
		concentrat	recently	buffy coat layer	exhibited the highest	when compared with that
		ed	developed	following high	increases when	exhibited by standard i-
		platelet-	to collect	centrifugation	compared with that	PRF. This significantly
		rich fibrin	higher	protocols (3000×g for	in i-PRF. While both	promoted higher gingival
		(C-PRF)	concentrati	8 min on a horizontal	i-PRF and C-PRF	fibroblast migration.
		when	ons of	centrifuge) to	exhibited high	proliferation. gene
		compared	platelets/le	specifically	biocompatibility and	expression, and collagen I
		with	ukocytes	concentrate cells	induced significantly	synthesis.
		traditional	specificall	within the	higher fibroblast	Clinical relevance: The
		injectable	y from the	platelet/leukocyte-	migration and	findings of the present
		(i-PRF)	buffy coat	rich buffy coat layer.	proliferation when	study demonstrate that a
		protocols	layer (C-	Thereafter, the	compared with that	more potent formulation
			PRF)	expression of seven	of the control tissue	of liquid platelet
			following	different growth	culture plastic group,	concentrate than that
			faster	factors, including	C-PRF showed the	obtained from the upper
			centrifugat	PDGF-AA, PDGF-	greatest potential for	plasma layer following a
			ion	AB, PDGF-BB, TGF-	cell migration and	short and slow
			protocols.	β 1, VEGF, IGF-1,	proliferation.	centrifugation protocol (i-
			The aim of	and EGF, was	Furthermore, C-PRF	PRF protocol) can be
			this study	characterized for up	induced significantly	obtained for clinical use
			was to	to 10 days. Then,	higher mRNA levels	by specifically harvesting
			investigate	gingival fibroblast	of TGF- β and PDGF	cells in the platelet- and
			the	biocompatibility was	levels at 3 days and	leukocyte-rich buffy coat
			regenerativ	investigated at 24 h	greater collagen 1	layer following an 8-min
			e	(live/dead assay);	staining when	3000×g centrifugation
			properties	migration was	compared with	protocol (C-PRF
			and effects	investigated at 24 h;	induced by i-PRF.	protocol).
			on growth	proliferation was		

 $_{Page}279$

			factor	investigated at 1, 3,			
			release and	and 5 days; and the			
			cellular	expression of PDGF			
			activity of	and TGF- β was			
			PRF	investigated at 3 days.			
			collected	Collagen 1			
			through	immunostaining was			
			this novel	also quantified at 14			
			harvesting	days			
			technique				
			compared				
			to standard				
			i-PRF				
			protocols.				
16	Miron	Comparis	Owing to	PRF was produced on	PRF clots produced	The present study	
	RJ et.	on of	its	three commercially	utilizing the low-	demonstrated the	
	al,	platelet-	widespread	available centrifuges	speed centrifugation	reproducibility of a	
	2020.5	rich fibrin	use, many	including the	speeds (~ 200 g for 8	scientific concept	
		(PRF)	companies	IntraSpin Device	min) produce clots	(reduction in RCF	
		produced	have	(IntraLock), the Duo	that (1) contained a	produces PRF clots with	
		using 3	commercia	Quattro (Process for	higher concentration	more evenly distributed	
		commerci	lized	PRF), and Salvin	of evenly distributed	cells and growth factors)	
		ally	various	(Salvin Dental). Two	platelets, (2) secreted	utilizing different devices.	
		available	centrifugat	separate protocols	higher concentrations	Furthermore, (and until	
		centrifuge	ion devices	were tested on each	of growth factors	now overlooked), it was	
		s at both	with	machine including the	over a 10 day period,	revealed for the first time	
		high (~	various	original leukocyte	and (3) were smaller	that the centrifugation	
		700 g)	proposed	and platelet-rich	in size. This was	tubes are central to the	
		and low	protocols.	fibrin (L-PRF)	irrespective of the	quality production of	
		(~ 200 g)	The aim of	protocol (~ 700 RCF	centrifugation device	PRF. Future research	
		relative	the present	max (~ 400 RCF clot)	utilized and	investigating tube	
		centrifuga	study was	for 12 min) as well as	consistently observed	characteristics thus	
		tion	to compare	the advanced platelet-	on all 3 devices. The	becomes critically	
		forces	3 different	rich fibrin (A-PRF+)	greatest impact was	important for the future	
			commercia	protocol (~ 200 g	found between the	optimization of PRF.	
			lly	RCF max (~ 130 g	protocols utilized (up	Clinical relevance: This	

©2023 IJDSIR, All Rights Reserved

.....

.....

.

	1		.1 1 1		(2000()	
			available	RCF clot) for 8 min).	to a 200%).	is the first study to reveal
			centrifuges	Each of the tested	Interestingly, it was	the marked impact of
			at both	groups was compared	further revealed that	centrifugation tubes on
			high and	for cell numbers,	the centrifugation	the final production of
			low g-	growth factor release,	tubes used had a	PRF. Future study thus
			force	scanning electron	much greater impact	becomes markedly
			protocols.	microscopy (SEM)	on the final size	important to further
				for morphological	outcome of PRF	optimize the quality of
				differences, and clot	clots when compared	PRF-based matrices. It
				size (both weight and	to centrifugation	was further found that
				length/width).	devices. It was found	little variability existed
					that, in general, the	between the
					Process for PRF	centrifugation devices if
					tubes produced	optimized centrifugation
					significantly greater-	protocols (lower
					sized clots when	centrifugation speeds)
					compared to other	were utilized.
					commercially	
					available tubes The	
					Salvin Dental tubes	
					also produced	
					significantly greater	
					PRF clots when	
					compared to the	
					IntraLock tubes on	
					and of the tested	
					caeff of the tested	
					devices	
17	Dondo	Commonst	the size of	This	Gevices.	Dath and offective
17	Dande	. Comparat	, the aim of	Ims was a	Significant	Boin are effective
	Kar SA	ive	the study	randomized	unterences were seen	materiais in root
	et al,	evaluation	was	controlled clinical	from baseline to 6	coverage, but chorion
	•	of human	evaluation	study. Totally 30 sites	months in test group	membrane showed better
	2019^{24} .	chorion	and	with Miller's Class I	regarding gain in	and more stable results at
		membran	compariso	and Class II recession	CAL $(P < 0.001),$	the end of 6 months as
		e and	n of the	were taken and	reduction in REC-HT	compared to PRF
		platelet-	efficacy of	randomly allocated to	(P < 0.001), decrease	membrane in treating

	rich fibrin	chorion	chorion membrane	in REC-WD $(P =$	gingival recession.
	membran	membrane	(test) PRF membrane	0.02), increase in	
	e with	and PRF	(control) group. The	WKG (<i>P</i> < 0.001),	
	coronally	membrane	clinical parameters	and increase in GTH	
	advanced	in the	recorded were clinical	(P < 0.001). In the	
	flap in	treatment	attachment level	control group also,	
	treatment	of Miller's	(CAL), recession	significant difference	
	of Miller's	Class I and	height (REC-HT),	was noted at the end	
	class I	Class II	recession width	of 6 months i	
	and II	recession	(REC-WD), width of	regarding gain in	
	recession	defects.	keratinized gingiva	CAL $(P < 0.001),$	
	defects: A		(WKG) and gingival	reduction in REC-HT	
	randomiz		tissue thickness	(P < 0.001), decrease	
	ed		(GTH).	in REC-WD $(P =$	
	controlled			0.029), increase in	
	studv.			WKG $(P < 0.001)$.	
	5			and increase in GTH	
				(P < 0.001).	
				Intergroup analysis	
				showed significant	
				differences between	
				test and control	
				groups at the end of	
				6 months with CAL	
				REC-HT WKG and	
				GTH showing	
				statistically	
				significant	
				differences with $P =$	
				0.002 0.001 0.001	
				0.002, 0.001, 0.001,	
				respectively. No	
				significant difference	
				was seen regarding	
				REC-WD ($P = 0.39$).	
18 Gutiér	Root	The			

.......

........

	rez et	Coverage	purpose of			
	al	with	this report			
	2019 ²⁵	Platelet-	is to			
		Rich	present a			
		Fibrin in	case of			
		Miller's	multiple			
		Class I,	Miller's			
		III, and	Class III			
		IV	and IV GR			
		Gingival	treated			
		Retraction	with CAF			
		S	and PRF			
			where the			
			potential of			
			PRF to			
			increase			
			gingival			
			thickness			
			and			
			clinical			
			attachment			
			level, and			
			improve			
			soft-tissue			
			healing			
			and			
			clinical			
			appearance			
			was			
			corroborat			
			ed.			
19	Tsujin	Striking	It was	prepared PRF	Using low-speed	Therefore, both blood-
	o T et.	Differenc	recently	matrices using	centrifugation,	collection tube types and
	al,	es in	demonstrat	various types of	platelets were	centrifugal conditions
	and	Platelet	ed that	blood-collection	distributed	appeared to influence
	2019.11	Distributi	centrifugat	tubes (plain glass	homogeneously	platelet distribution in the

.

.....

. .

.......

- -

on	ion	tubes and silica-	within the PRF	PRF matrix. Platelets
between	conditions	containing plastic	matrix regardless of	distributed in the deep
Advanced	influence	tubes) and different	tube types. In high-	regions of the PRF matrix
-Platelet-	the	centrifugation speeds.	speed centrifugation,	may contribute to better
Rich	compositio	The protocols of	platelets were	growth factor retention
Fibrin and	n of PRF	concentrated growth	distributed mainly on	and release. However,
Concentra	and that	factors and advanced-	one surface region of	clinicians should be
ted	silica	PRF represented	the PRF matrix in	careful in using silica-
Growth	microparti	high- and low-speed	glass tubes, whereas	coated tubes because their
Factors:	cles from	centrifugation,	in silica-coated	silica microparticles may
Effects of	silica-	respectively. Platelet	tubes, platelet	be a health hazard.
Silica-	coated	distribution in the	distribution was	
Containin	plastic	PRF matrix was	commonly more	
g Plastic	tubes can	examined	diffusive than in	
Tubes	enter the	immunohistochemical	glass tubes.	
	PRF	ly.		
	matrix.			
	These			
	factors			
	may also			
	modify			
	platelet			
	distributio			
	n and was			
	hence			
	studied			
	1	L		

Γ	20	Miron	Sinus	The use of	This article	
		RJ et	Augmenta	PRF for	highlights the	
		al,	tion	the repair	biological and	
		2018 9	Using	of	clinical advantages	
			Platelet-	Schneideri	of using PRF with or	
			Rich	an	without a bone	
			Fibrin	membrane	grafting material for	
			With or	perforation	sinus augmentation	
			Without a	s and as a	procedures and	
			Bone	barrier	provides guidelines	
			Graft:	membrane	detailing when,	
			What Is	for lateral	where, and why to	
			the	window	use PRF alone versus	
			Consensu	closure is	in combination with	
			s?	discussed.	a bone graft.	
F	21	Agraw	Evolution	This		
		al AA	, current	review		
		et al,	status and	intends to		
		2017.13	advances	clarify all		
			in	these		
			applicatio	confusion		
			n of	by briefing		
			platelet	the exact		
			concentrat	evolution		
			e in	of PC,		
			periodonti	their		
			cs and	preparation		
			implantol	techniques,		
			ogy.	recent		
				advances		
				and their		
				various		
				clinical		
				and		
				technical		
1				1		

			aspects and			
			application			
			s.			
22	Chenc	Applicati	The aim of	An 18 year-old male	The postoperative	The successful clinical
	hev et	on of	this case	with expulsion of	period was	and radiographic results
	al,.	Platelet-	report was	tooth 11 and partial	uneventful. The	of the case suggest that
	2017 26	Rich	to assess	fracture of the	control CBCT scan	using A-PRF and i-PRF
		Fibrin and	the	alveolar ridge was	showed good	can be beneficial for bone
		Injectable	possibility	treated with	organization of new	augmentation of the
		Platelet-	for	augmentation of the	bone allowing	alveolar ridge before
		Rich	augmentati	alveolar ridge using	placement of a dental	implant placement.
		Fibrin in	on of the	bone graft material,	implant.	
		Combinat	alveolar	injectable platelet-		
		ion of	ridge in the	rich-fibrin(i-PRF) and		
		Bone	frontal	advanced platelet-		
		Substitute	region of	rich-fibrin (A-PRF).		
		Material	the upper	Clinical results were		
		for	jaw,	reviewed 4 months		
		Alveolar	utilizing a	after the		
		Ridge	combinatio	augmentation and a		
		Augmenta	n of bone	dental implant was		
		tion - a	graft	placed.		
		Case	material,			
		Report	injectable			
			platelet-			
			rich-fibrin			
			(i-PRF)			
			and			
			advanced			
			platelet-			
			rich fibrin			
			(A-PRF).			
23	Kobay	Comparat	to compare	Eighteen blood	The highest reported	The study indicated that
	ashi E,	ive	growth	samples were	growth factor	the various platelet
	et al.,	release of	factor	collected from six	released from platelet	concentrates have quite

.

	2016 12	growth	release	donors (3 samples	concentrates was	different release kinetics.
		factors	over time	each for PRP, PRF,	PDGF-AA followed	The advantage of PRP is
		from	from	and A-PRF).	by PDGF-BB,	the release of significantly
		PRP,	platelet-	Following	TGFB1, VEGF, and	higher proteins at earlier
		PRF, and	rich	preparation, samples	PDGF-AB. In	time points whereas PRF
		advanced-	plasma	were incubated in a	general, following	displayed a continual and
		PRF.	(PRP),	plate shaker and	15-60 min	steady release of growth
			platelet-	assessed for growth	incubation, PRP	factors over a 10-day
			rich fibrin	factor release at 15	released significantly	period. The new
			(PRF), and	min, 60 min, 8 h, 1	higher growth factors	formulation of PRF (A-
			a	day, 3 days, and 10	when compared to	PRF) released
			modernize	days. Thereafter,	PRF and A-PRF. At	significantly higher total
			d protocol	growth factor release	later time points up	quantities of growth
			for PRF,	of PDGF-AA, PDGF-	to 10 days, it was	factors when compared to
			advanced-	AB, PDGF-BB,	routinely found that	traditional PRF.
			PRF (A-	TGFB1, VEGF, EGF,	A-PRF released the	Clinical relevance: PRP
			PRF).	and IGF was	highest total growth	can be recommended for
				quantified using	factors. Furthermore,	fast delivery of growth
				ELISA.	A-PRF released	factors whereas A-PRF is
					significantly higher	better-suited for long-term
					total protein	release.
					accumulated over a	
					10-day period when	
					compared to PRP or	
					PRF.	
24	Padma	A split	the present	Total of 15	Mean percentage	CAF is a predictable
	R et	mouth	research	systemically healthy	root coverage in the	treatment for isolated
	al,	randomiz	was	subjects presenting	test group after 1, 3,	Miller's class I and II
	2013 27	ed	undertaken	bilateral isolated	and 6 months was	recession defects. The
		controlled	to study	Miller's class I and II	34.58, 70.73, and	addition of PRF
		study to	the	recession were	100, respectively.	membrane with CAF
		evaluate	additional	enrolled into the	Differences between	provides superior root
		the	benefits of	study. Each patient	the control and test	coverage with additional
		adjunctive	PRF when	was randomly treated	groups were	benefits of gain in CAL
		effect of	used along	with a combination of	statistically	and WKG at 6 months
		platelet-	with	CAF along with a	significant. This	postoperatively.
			1		1	

rich fibrin	coronally	platelet-rich fibrin	study also showed a
to	advanced	(PRF) membrane on	statistically
coronally	flap	the test site and CAF	significant increase
advanced	(CAF).	alone on the control	in WKG in the test
flap in		site. Recession depth,	group (2.94 \pm 0.77 at
Miller's		clinical attachment	baseline to $5.38 \pm$
class-I		level (CAL), and	1.67 at 6 months).
and II		width of keratinized	
recession		gingiva (WKG) were	
defects		compared with	
		baseline at 1, 3, and 6	
		months between test	
		and control sites.	