

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume – 5, Issue – 1, February - 2022, Page No. : 329 - 345

Digital versus conventional implant impressions-Finding the evidence

¹Dr. Jyoti Yadav, Post graduate student, Department of Prosthodontics, Dr. HSJ Institute of Dental Sciences and Hospital, Panjab University, Chandigarh.

²Dr. Virender Kumar, Assistant Professor, Department of Prosthodontics, Dr. HSJ Institute of Dental Sciences and Hospital, Panjab University, Chandigarh.

³Dr. Sharique Rehan, Sr. Lecturer, Department of Prosthodontics, Dr. HSJ Institute of Dental Sciences and Hospital, Panjab University, Chandigarh.

⁴Dr. Sunint Singh, Assistant Professor, Department of Prosthodontics, Dr. HSJ Institute of Dental Sciences and Hospital, Panjab University, Chandigarh.

Corresponding Author: Dr. Virender Kumar, Assistant Professor, Department of Prosthodontics, Dr. HSJ Institute of Dental Sciences and Hospital, Panjab University, Chandigarh.

Citation of this Article: Dr. Jyoti Yadav, Dr. Virender Kumar, Dr. Sharique Rehan, Dr. Sunint Singh, "Digital versus conventional implant impressions-Finding the evidence", IJDSIR- February - 2022, Vol. – 5, Issue - 1, P. No. 329 – 345. **Copyright:** © 2022, Dr. Virender Kumar, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License. Which allows others to remix, tweak, and build upon the work

non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Purpose: Digital technology has been revolutionary in the recent past and has made various dental procedures easier, better and more efficient. Accuracy of impression procedure is very crucial in implant prostheses fabrication, which affects the final result. Digital implant impression accurately locates the three-dimensional implant position in relation to the other structures in mouth. However, there is a lack of evidence on the accuracy of digital versus conventional implant impressions. Therefore, the purpose of this systematic review is to evaluate the accuracy of digital implant impression when compared with conventional impression as reviewed from several studies.

Method: A literature search was conducted electronically in PubMed, using the terms such as digital implant impression, intraoral digital implant impression, accuracy and intraoral scanner. Out of 87 articles, 19 relevant articles were identified within 10 years limit based on the inclusion and exclusion criteria. Out of 19 articles, 15 articles were based on in vitro studies and other 4 were clinical studies. The pooled data was analysed and then relevant data was extracted.

Result: Out of 19 articles, 7 articles concluded that accuracy of digital impression is better, 6 articles demonstrated that accuracy of both impressions are same and according to 6 articles accuracy of conventional impression is better.

Conclusion: On the basis of studies performed during the last 10 years, it can be concluded that digital implant impressions offer a reliable alternative to conventional impressions.

Keywords: Digital implant impression, intraoral digital implant impression, conventional implant impression, accuracy, intraoral scanner

Introduction

Digital technology has been revolutionary in the recent past and has made various dental procedures easier, better and more efficient. Impression procedure is the starting point and a crucial step in implant prostheses fabrication. For a successful outcome in implant supported prostheses, it is essential to have an accurate transfer of three-dimensional implant position and angulation from the patient's mouth to the master cast via impression.^[1&2]

The primary aim of dental impressions whether conventional or digital, is to obtain the imprint of the required site, the adjacent and antagonist teeth, as well as the interocclusal record relationship.^[3] From the very beginning the conventional implant impression techniques have been a standard procedure in fixed prosthodontics. There are various factors which can affect the accuracy of the implant impression like number and angle of the implants which can cause distortion of the impression material upon removal, splinting, depth of the implants, machining tolerance of components and type of connection.^[4-6]

The two commonly used impression techniques for the transfer of the intraoral position of implants to working casts are the direct and indirect conventional impression techniques. But none of the techniques has been without flaws like there might be errors in selection of tray and impression material, the type of impression technique used, time consumption, disinfection of impression, transportation, and storage issues, application of inadequate adhesive or poor haemorrhage control. ^[7&8] To overcome such flaws, various innovative methods in digital dentistry were introduced in Prosthodontics. The use of intra-oral scanners and related systems by many clinicians is on an increase as an alternative to the conventional impression materials and techniques.

The first commercially available intraoral scanner was introduced about two decades ago, which has resulted in an increase in precision and efficiency.^[9] The intraoral scanning devices utilize a sophisticated optical surface scanning technology that works similarly to a camera, but instead of simply capturing lights and colours, the sensors measure light reflection times from various surfaces through processes to capture the object three-dimensionally.^[10] This information is then captured by the three-dimensional software that utilizes specific alignment algorithms to allow for registration of the object. Three of the common scanning principles used today by intraoral dental scanners on the market are: ^[11&12]

- 1.Triangulation,
- 2. Active wave-front sampling
- 3. Parallel confocal laser scanning.

Each of these techniques utilize a combination of these various imaging capturing methodologies to collect the surface data of the teeth and mucosa so that the information can be registered and stitched together through an alignment process in order to create the virtual three-dimensional model.

Digital impression making provides several advantages over the conventional like- visualization of real-time image while impression making, selective capture of the relevant areas, easy repeatability of the flawed areas without remaking the complete impression, reduced gag reflex, improved patient acceptance, reduced chair-time,

PageJ

no need for tray selection, no need for waiting the cast to set, reduced distortion of impression materials, reduced storage requirement, disinfecting the impression and cast and transport it to the laboratory, rapid access to threedimensional diagnostic information and easy and rapid transfer of the digital information for communication between the clinician and patients.^[10 & 13]

Digital implant impression accurately locates the threedimensional implant position in relation to the other structures in the mouth. However, there is a lack of evidence on the accuracy of digital versus conventional implant impressions. Therefore, the purpose of this systematic review is to evaluate the accuracy of digital implant impression when compared with conventional impression as reviewed from several studies.

Materials and methods

Search strategy: An electronic search was conducted using PubMed database. The keywords used such as "digital implant impression", "intraoral digital implant impression", "conventional implant impression", "accuracy" and "intraoral scanner".

Inclusion and exclusion criteria

Criteria used for inclusion of studies were:

1) Comparison of accuracy of digital impression with conventional impression regardless of method used for measurement.

2) Partially or completely edentulous dental arch or replica with implants

3) Either in vivo or in vitro studies

4) Articles published in last 10 years (2011-2020)

Criteria used for exclusion of studies were:

- 1) Incomplete articles such as abstracts only
- 2) Dual publications
- 3) Case reports
- 4) Expert opinions
- 5) Technical and clinical reports

6) Review articles

Selection strategy and collecting data

The search strategy followed a 3-stage selection process to investigate each database that subsequently considered titles, abstracts, and full texts.

First stage: The list of titles obtained from the database was screened and those titles that clearly did not refer to digital or conventional implant impressions were excluded.

Second stage: The abstracts of the selected titles were analyzed and those studies that did not deal with the comparison between digital and conventional implant impressions were excluded.

Third stage: Full-text of selected articles were examined carefully based on inclusion criteria and verified whether the studies were relevant or not. Final selection of articles was based on full-text reading.

Only relevant articles were added to this review. (Figure

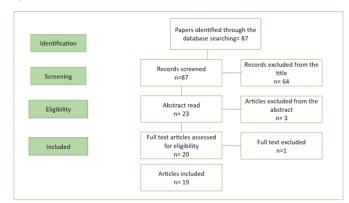


Figure 1: Flow diagram of articles selection.

Results

Out of 87 articles, 19 relevant articles were identified based on the inclusion and exclusion criteria. Out of 19 articles, 15 articles were based on in vitro studies and other 4 were clinical studies. The pooled data was analysed and then relevant data was extracted and is summarised in the table-1.

Table 1: Data summary of the articles included in the study.

Author	Study	Sample	Scanner used	Factors evaluated	Result
	design	size			
Marghalani et al. ^[14] (2018)	In-vitro .	60	(CEREC Omnicam; Dentsply Sirona) and Blue light IOS (True Definition; 3M ESPE)	deviations (median ±interquartile range) among the 3 impression groups for 2 different implant systems (Replace Select RP; Nobel Biocare and Tissue level RN; Straumann) in Two partially edentulous mandibular casts with 2 internal connection implant analogs with a	Definition scans were the most accurate, followed by Omnicam scans with no statistical significance, and last, conventional impressions (Impregum;3M ESPE) with a statistically significant difference compared with both
Alshawaf et al. ^[15] (2018)	In-vitro .	10	White light IOS (CEREC Omnicam) And Active Wavefront Sampling technology IOS (True Definition)	deviations among the 3 impression groups in mandibular stone cast with Kennedy class II edentulism fabricated	arches had inferior accuracy to conventional stone casts fabricated from splinted open tray impressions.
Lee et al. ^[16] (2015)	In-vitro	30	Digital impression i- Tero (cadentiterotm,	c	Milled models from digital impression (i-Tero;

.....

.......

			Carlstadt, NJ, USA)	customized maxillary	cadentiterotm, Carlstadt
			and Laboratory scanner	model containing a	NJ, USA) are comparable
			(Lava Scan ST; 3M	single implant (Bone	to gypsum models from
			ESPE, Seefeld,	Level, Regular Crossfit;	conventional
			Germany)	Straumann, Basel,	impression with viny
				Switzerland) located in	polysiloxane materia
			the maxillary left	(Aquasil Ultra	
				second premolar	Monophase/LV;
				position	Dentsply, York, Pa) in
					most anatomical area
					except the secondary
					anatomical areas, such a
					grooves and fossae, where
					gypsum model
					represented more detail
					and prominent anatomy.
Alikhasi et al.	In-vitro	90	Intraoral scanner (Trios	Angular and linear	Digital impression i
[17] (2018)			3Shape)	distortion differences	better than the direc
				among three impression	technique in the
				groups, angular	edentulous arch with
				distortion differences	straight and tilted
				between internal and	implants, and both o
				external connections,	them are more accurate
				and between straight	than the indirec
				and tilted implants for	technique.
				either linear or angular	
				distortion in Two	
				maxillary edentulous	
				acrylic resin models	
				with two different	
				implant connections	
				(internal or external)	
				served as a reference	
				model.	
		1			

et al. ^[18] (2016)			(TRIOS; 3shape,	deviations from cast of	impressions are as
			Denmark)	an edentulous mandible	accurate as conventional
				with five implants	implant impressions
Gherlone et al.	In vivo	25	Intraoral scanner	Presence of voids at the	Greater efficacy when
[19] (2016)			TRIOS (3 shape)	bar implant connection	using digital impressions
				and any variation on	rather than conventional
				marginal bone height	impressions
				over time were	
				measured in patients	
				underwent full arch	
				immediate load	
				rehabilitations which	
				were fixed to a total of	
				four implants (two axial	
				and two tilted)	
Tan et al. ^[20]	In vitro	36	Intraoral scanners	Defined Linear	Digital impressions poor
(2019)			(TRIOS and True	distortion and global	accuracy than
			Definition) and dental	linear distortions (d _r)	conventional impressions
			laboratory scanners	and 3D reference	
			(Ceramill Map400,	distance distortions	
			ineos X5 and D900)	between implants on	
				two completely	
				edentulous maxillary	
				arch master models (A	
				and B) with six or eight	
				implants respectively.	
Menini et al. ^[21]	In vitro	35	Intraoral digitizer	Measure implant	Digital impression showed
(2018)			system [True Definition	angulation and	better accuracy compared
			Scanner, 3M ESPE].	interimplant distances	to conventional
				on casts. The best and	impression.
				the worst impressions	
				made with TI and DI	
				were selected to	
				fabricate four milled	
				titanium frameworks.	

				Passive fit was evaluated through	
				Sheffield test, screwing	
				each framework on the	
				master cast.	
Liu et al. ^[22]	In vitro	10	3D printer (Lingtong II,	The interimplant	Multi-implant impressions
(2019)			shino)	distances and	using 3D -printed custom
				interimplant angulations	trays and splinting could
				for each implant pair	yield an impression with
				were measured to assess	similar accuracy as that
				3D deviations.	obtained with
					conventional techniques
Cappare et al. ^[23]	In vivo	50	Carestream CS 3600	Accuracy of the	Satisfactory accuracy and
(2019)			(Version 3.1.0	framework-implant	predictability of the IOS
			Acquisition Software,	connection, check for	to be a reliable alternative
			Carestream Dental	the presence of voids at	in clinical practice to the
			LLC, Atlanta, GA,	the bar-implant	conventional workflow for
			USA).	connection and measure	implant full-arch
				bone level. Criteria used	rehabilitations.
				to assess success at the	The accuracy of
				prosthetic level were the	CAD/CAM systems has
				occurrence of prosthetic	shown to be compatible
				maintenance, the	with conventional
				absence of fractures of	impressions.
				the acrylic resin	
				superstructure and	
				voids.	
Kim et al. ^[24]	In vitro	10	Intraoral scanner	The linear and angular	Intraoral digital scan
(2019)			(TRIOS 3; 3Shape) and	displacements of each	resulted in less accurate
			scan bodies (truscan	implant replica were	Trueness than the
			body; truabutment)	evaluated	conventional open-tray
					impression technique
Chochlidakis et	In vivo	16	Intraoral (True	3D deviations between	Full-arch digital scans and
al. ^[25] (2020)			Definition, 3M, St Paul,	virtual casts from	a complete digital
			MN) and extraoral		workflow in the

. .

....

. .

. .

				· · · · · · · · · · · · · · · · · · ·	
			scanners (STL file 2)	digital scans and	fabrication of maxillary
				digitized final stone	fixed Complete dentures
				casts generated from	may be clinically feasible.
				conventional implant	
				impressions	
				Correlation between	
				number of implants and	
				3D deviations was	
				investigated	
Ferrini et al. ^[26]	In vivo	24	3MTM True Definition	Framework-implant	The digital scanning could
(2018)			Scanner	connection accuracy	be considered a reliable
				was evaluated by means	alternative to the
				intraoral digital	traditional impression.
				radiographs at 3, 6, 12,	The whole digital
				and 36 months of	workflow mayshorten
				follow-up examinations.	clinical time and improve
				Outcome considerations	the patient acceptance.
				comprised implant and	
				prosthetic survival and	
				success rates, marginal	
				bone level changes, and	
				required clinical time to	
				take impressions for	
				posterior maxillary	
				restorations supported	
				by an upright and a	
				distally tilted implant	
				supporting 3-unit or 4-	
				unit screw-retained	
				prostheses at 3-year	
				follow-up.	
Abdel-Azim et	In vitro	24	Itero digital scanner	Marginal fit	The conventional pathway
al. ^[27] (2014)				measurements were	resulted in a smaller
				made	marginal discrepancy for
					single-implant

. . . -

			~ 		
					frameworks. In contrast,
					the digital pathway
					resulted in a smaller
					marginal discrepancy for
					full-arch implant
					frameworks.
Basakiet al. ^[28]	In vitro	10	Intraoral scanning	The inter-implant	Definitive casts fabricated
(2017)			device (itero intraoral		using the digital
· · ·					impression approach were
			C .		less accurate than those
			technology)	were measured for the	
			(comology)		conventional impression
				each definitive cast.	conventional impression
				Clinical qualitative	
				assessment of accuracy	
				was done via the	
				assessment of the	
				passivity of a master	
				verification stent for	
				each implant pair, and	
				significance was	
				analyzed using chi-	
				square test	
Huang et al. ^[29]	In vitro	16	3Shape TRIOS scanner	Trueness and precision	Conventional splinted
(2020)			and newly designed	assessment by the	open-tray impressions
			CAD/CAM titanium	median and interquartile	were more accurate than
			alloy scan bodies were	range (IQR) of the RMS	digital impressions for
			used	values	full-arch implant
					rehabilitation.
Rech-Ortega et	In vitro	20	True Definition	The XYZ module	In cases of rehabilitations
al. ^[30] (2019)					involving more than four
				as this indicated the real	-
				distances in millimeters	-
				between the analogue	considered accurate
				_	considered accurate.
				centers.	

. . . .

....

.....

	•••••	•••••			For adjacent analogues,
					the direct technique (EIM)
					can be considered the
					most accurate.
					Between intermittently
					positioned analogues 1-4,
					the intra oral scanner True
					Definition (3M ESPE)
					(SDM) provided accurate
					data.
					For the 3-6 distance, both
					techniques obtained
					significantly different
					values from the master
					model
Eliasson et al.	In vitro	15	Healing abutment	The center point of each	Working cast fabrication
[31] (2012)			(Encode®) provided	implant analogue fitting	using Encode abutments
			with digitally coded	surface was measured	and a Robocast analogue
			information on length	with a laser measuring	placement technique was
			and diameter on the top	machine in the x-, y-,	less accurate than the
				and z-axis, as were also	conventional impression
				the angular direction of	technique
				the center axis and the	
				position of the	
				antirotational hex.	
Amin et al. ^[32]	In vitro	10	Intra-oral scanners	The 3D Deviations were	Full-arch digital implant
(2017)			(CEREC Omnicam and	recorded as root-mean-	impressions using True
			True Definition)	square error.	Definition scanner and
					Omnicam were
					significantly more
					accurate than the
					conventional impressions
					with the splinted open-
		1			tray technique

.

into fixed and implant prosthodontics has been

Page 3,

advantageous in many ways. These includes the elimination of tray selections, decreased risk of distortion during impression making, pouring, disinfecting, shipping to dental laboratory and increase patient comfort and acceptance.^[33]

But there is a lack of evidence that may suggest the superior accuracy of digital implant impression over the conventional implant impression techniques. Therefore, the purpose of the present study was to find the evidences that determine the accuracy of digital implant impressions in comparison to conventional impression regardless of the methodology and study design.

The studies which are included in this are mentioned in the table-1. From total 19 included studies, 15 articles were based on in vitro studies and other 4 were clinical studies. Critical evaluation of the above articles show that Digital implant impressions are reported to be a viable alternative to conventional techniques, but these statements are mostly based on in-vitro study results. ^[14-18,20-22,24,27,29-32]

Marghalani et al.^[14] compared the accuracy of digital vs. impressions for conventional implant partially edentulous posterior mandibular arches analogs with a 30-degree angulation from 2 different implant systems (Replace Select RP; Nobel BioCare and Tissue level RN; Straumann) and reported that the digital technique had the fewest 3-dimensional (3D) deviations (15 ± 6 mm) compared with the conventional techniques (39 \pm 18 mm). However, the accuracy of all impression techniques was within clinically acceptable levels.^[14] This is in contrast to the in vitro study of Alshawaf et al. ^[15] which showed that digital impressions for partially edentulous posterior mandibular arches had inferior accuracy to conventional methods (splinted open tray impressions) with 3-D deviations as measured by root

mean square (mean \pm SD) are 120.39 \pm 5.91 μ m and 53.49 \pm 9.47 μ m respectively.

Lee et al. ^[16] compared the accuracy of gypsum models acquired from the conventional implant impression with a vinyl poly siloxane material (Aquasil Ultra Monophase/LV; Dentsply, York, Pa) to digitally milled models created from direct digitalization by threedimensional analysis (i-Tero; Cadenti Tero TM, Carlstadt, NJ, USA) and evaluated that there is no significant difference in accuracy of milled models from digital impression and gypsum models from conventional impression. However, accuracy in the secondary anatomical areas, such as grooves and fossae and vertical displacement of the implant position from the gypsum and digitally milled models are significantly different from master model (P < 0.001, P = 0.020, respectively). While Basaki et al.^[28] assessed the threedimensional accuracy of implant definitive casts fabricated using a digital impression approach and compared with those of a conventional impression method in a partially edentulous condition and found that definitive casts fabricated using the digital impression approach were less accurate than those fabricated from the conventional impression approach with mean \pm standard deviation (SD) error of 116 \pm 94 μm and 56 \pm 29 μm for the digital and conventional approaches, respectively (P = .01). However, Implant angulation did not have a significant influence on definitive cast accuracy in either technique (P = .64).

Alikhasi et al ^[17] compared the three-dimensional accuracy of digital impressions versus conventional impressions technique for the maxillary full arch with tilted implants of two connection types (internal or external) and demonstrated the digital impressions have significantly higher accuracy than conventional methods with significant angular and linear distortion differences

Page 3

among impression groups (P < 0.001), angular distortion differences between internal and external connections (P < 0.001), and between straight and tilted implants for either linear (P < 0.001) or angular (P = 0.002) distortion. They further noted that connection type and implant angulation did not affect the accuracy of digital impressions (p > 0.05) whereas these two factors affected the accuracy of conventional impressions. The findings of this study are in disagreement with the study performed by Lin et al.^[17] who concluded that the digital impressions produced less accurate definitive casts than conventional impressions. They reported that divergence between two implants $(0,15^{\circ},30^{\circ},45^{\circ})$ did not affect the accuracy of the definitive cast created through conventional impressions, but it significantly affected the accuracy of milled cast through digital impression. They further reported that, at lower level of divergence $(O^0 \text{ to } 15^0)$, conventional impressions displayed more accuracy than digital impressions. However, at higher divergence $(30^{\circ} \text{ to } 45^{\circ})$, the differences in accuracy between conventional and digital impression were less apparent.

Sarah Amin et al. ^[32] compared the accuracy of digital full arch impressions with Omnicam and True definition scanners versus conventional implant impressions. The findings of their study indicated that digital full arch impressions using digital scanners were significantly more accurate with 3-D deviations 46.41 um \pm 7.34 (Omnicam) and 19.32 um \pm 2.77 (True Definition) than the conventional impression with the splinted open tray technique (167.93 um \pm 50.37). The results of this study are in partial contrast with a previous study by Papaspyridakos et al.^[18] who compared the accuracy of digital implant impression using digital intraoral scanner (TRIOS; 3shape,Denmark) at implant level versus conventional impression technique with polyether

© 2022 IJDSIR, All Rights Reserved

impression material (3M ESPE; Impregum, St. Paul, MN, USA) with five implants in edentulous mandible and concluded that digital implant impressions were as accurate as conventional open tray splinted implant level impressions (mean value of 3D deviation -17 um) and both are more accurate than open tray non-splinted technique (P < 0.0001). The different findings of the two studies can be attributed to many factors such as use of different scan bodies, different IOS systems, different reference scanners and differences in scanner precision as well as the different method of superimposition of test groups.

Abdel-Azim et al.^[27] demonstrated that the conventional pathway resulted in a smaller marginal discrepancy for single-implant frameworks (24.1 um) compared to digital impression/fabrication pathway (61.43 um) while the digital pathway resulted in a smaller marginal discrepancy (63.14 um) for full-arch implant frameworks compared to conventional technique (135.1 um). Similar results were demonstrated by Rech-Ortega et al. ^[30] and they found that for adjacent analogue, the direct technique is most accurate when compared with the digital impression technique as no statistically significant differences were found for distances between adjacent analogues between elastomeric impression material (EIM) data and the master model for the adjacent distance, (p=0.146; mean= 0.0203; standard deviation (s.d.) = 0.074). Between intermittently positioned analogues, SDM did not present significant differences, obtaining values close to the master model for the distance 1-4 (p-value = 0.255; mean = -0.021; s.d. = 0.056). Statistically significant differences were found between results obtained by both techniques in comparison with the master model for the distance between distal analogues and all other distances (p < 0.05). So in cases of full arch rehabilitations (> four implants), neither technique can be considered accurate although error falls within the tolerance limits (30-150µm)^[30].

However, the findings of the studies by Abdul Azim et al. and Rech-Ortega et al. are in partial disagreement with the study performed by Papaspyridakos et al. ^[18] who compared the intraoral scanner Trios with two conventional direct technique (splinted and non-splinted) and concluded that in cases of two- or three-unit bridges, the digital system is as accurate as the conventional technique.

Huang et al. ^[29] compared the accuracy of two newly designed CAD/ CAM scan bodies (with and without extensional structure) used in digital impressions with one another as well as with conventional implant impressions (splinted open-tray impressions) and found that conventional splinted open tray impressions were more accurate than the digital impressions with trueness (p= .001) and precision (p < .001) for full-arch implant rehabilitation.

Menini et al.^[21] evaluated and compared the accuracy of digital impression with seven conventional impression techniques by coordinate measurement machine and found statistically significant differences in accuracy (p < 0.01) with digital impression showed better accuracy. While Kim et al.^[24] compared the accuracy of conventional impressions and intraoral digital scans at the implant level in a complete arch model and concluded that conventional open-tray impression technique gave more accurate values than digital scan obtained using an intraoral scanner (P<.001) for all the implant replica locations and also significantly smaller angular deviations than the intraoral digital scan in 3 of 12 projection angles (P<.05); however, the amount of angular displacement was less than 1 degree.

Eliasson et al.^[31] compared the accuracy of implant analogue placement in working casts using a robot technique and an impression of Encode healing abutments mounted on the test side, with the conventional technique (pickup impression copings were inserted on the control side) and the center point of each implant analogue fitting surface was measured with a laser measuring machine in the x-, y-, and z-axis and concluded that working cast fabrication using Encode abutments and a Robocast analogue placement technique was less accurate than the conventional impression technique with mean center point deviation for the test and control side was 37.4 mm versus 18.5 mm (p = .001) in the x-axis, 47.3 mm versus 13.9 mm (p < .001) in the y-axis, and 35.0 mm versus 15.1 mm (p < .013) in the zaxis and Mean angle error was 0.41 degrees for the test and 0.14 degrees for the control side (p < .001). Mean rotation of the hexagon was 2.88 degrees for the test side and 1.82 degrees for controls (p < .001).

Most of the studies evaluated accuracy based on the difference in 3D deviations among digital and conventional impression groups. Marghalani et al ^[14] showed that digital impressions group show less deviation [Omnicam (20 ±4 mm) and True Definition (15 ±6 mm) groups}. In contrast Alshawaf et al. ^[15] found that conventional impression group had lower 3-D deviation 53.49 μ m (SD 9.47), while Lee et al. showed that no statistical difference between the gypsum and digitally milled models (P = 0.159 and 0.158, respectively).

Alikhasi et al. ^[17] evaluated the linear distortion differences for implants among conventional and digital impressions and found minimum linear distortion was seen in digital impression group (0.16 ± 0.1 mm), while Tan et al. ^[20] and Kim et al. ^[24] found conventional

impression demonstrated minimum linear distortion (10-20 um).

Some authors evaluated the effect of implant angulation on the accuracy of different impression techniques. In one such study, done by Papapyridakosa et al. ^[18] it was found that the implant angulation up to 15° did not affect the accuracy of implant impressions. Basaki et al. ^[28] also concluded that Implant angulation did not have a significant influence on definitive cast accuracy within either technique (P = .64). While Alikhasi et al. ^[17] showed digital techniques produced better results than conventional direct and indirect techniques with either straight (P < 0.001) or tilted (P < 0.001) implants.

Chochlidakis et al. ^[25] investigated the correlation between number of implants and 3D deviations and found that deviation increases with increase in no of implant. Azim et al. ^[27] found that for single implants, the conventional impression/fabrication pathway resulted in less marginal discrepancy (24.1um) compared to digital impression (61.43um) while for full arch frameworks, conventional resulted in more marginal discrepancy (135.1 um) compared to digital technique (63.14um).

On the other hand, all of the four in vivo studies $^{[19,23,25,26]}$ included in this review compared the digital and conventional implant impressions outcomes and found that there was no significant difference (p > 0.05) between the accuracy of digital and conventional impressions. However, due to improved patient acceptance and reduced clinical time, the digital impressions proved to be a reliable alternative to the conventional impressions.

The digital impressions are advantageous in many ways but have been found to be inconsistent in terms of accuracy when compared with conventional impression technique because different researchers have used a variety of digital scanner like intraoral scanner (3M True Definition Scanner, Cerec Omnicam, TRIOS Scanner 2, and CS 3600, iTERO), extraoral scanner and laboratory scanner and it has been shown that accuracy of scanner differs from each other for implant impressions.^[14,20,25] These differences in accuracy can be attributed to the fact that different methodologies have been used in accuracy measurement with different scanners which could result in some error related to different precision of each method. Moreover, difference in size of scan bodies and uneven spraying of scan bodies with powder (which are used to reduce the reflections) could potentially affect the accuracy of scanning.^[14,15]

Whereas in some in vitro conditions ^[15,20,24,28,29,31] results are superior to conventional impressions which may be due to avoidance of conventional error sources. Although results varied significantly based on methodology, study designs type of scanners, intra oral situation and clinician ability to perform scan. As fewer studies are available in the literature which compared the digital and conventional techniques, therefore, additional in vivo and in vitro research is required to compare the accuracy of digital impression in prosthodontic field.

Conclusion

On the basis of evidences found within the limitation of this review (15 in vitro studies and 4 in vivo studies), following conclusion can be drawn.

1. Digital implant impressions offer a reliable alternative to conventional impressions.

2. Implant inclination does not affect the digital implant impression accuracy while at higher divergence accuracy of conventional impression is affected.

3. Factors which can affect the accuracy of digital implant impression must be identified and investigated extensively through clinical studies.

4. A universally accepted well defined methodology should be developed which can be applied with all available IOS software and hardware to improve the reliability of implant impression accuracy.

5. There are only few in-vivo studies related to accuracy of the digital implant impressions. Therefore, more invivo as well as in-vitro studies are recommended to investigate the accuracy of digital impressions in comparison to conventional impressions.

6. Digital implant impression technology still require further improvement to fully substitute conventional impression techniques.

References

1. G. Wee, S. A. Aquilino, and R. L. Schneider, "Strategies to achieve fit in implant prosthodontics: a review of the literature," International Journal of Prosthodontics, vol. 12, no. 2, 1999, pp. 167–178.

2. M. Karl, W. Winter, T. D. Taylor, and S. M. Heckmann, "In vitro study on passive fit in implantsupported 5-unit fixed partial dentures," International Journal of Oral and Maxillofacial Implants, vol. 19, no. 1, 2004, pp. 30–37.

3. Mejía, Jeison B. Carbajal, Kazumi chi Wakabayashi, Takashi Nakamura, and Hirofumi Yatani, "Influence of abutment tooth geometry on the accuracy of conventional and digital methods of obtaining dental impressions." The Journal of prosthetic dentistry, vol. 118, no. 3, 2017, pp. 392-399.

4. P. Papaspyridakos, C.-J. Chen, G. O. Gallucci, A. Doukoudakis, H.-P. Weber, and V. Chronopoulos, "Accuracy of implant impressions for partially and completely edentulous patients: a systematic review," International Journal of Oral and Maxillofacial Implants, vol. 29, no. 4, 2014, pp. 836–845.

5. K. Al-Abdullah, R. Zandparsa, M. Finkelman, and H. Hirayama, "An in vitro comparison of the accuracy of

implant impressions with coded healing abutments and different implant angulations," Journal of Prosthetic Dentistry, vol. 110, no. 2, 2013, pp. 90–100.

6. V. A. Chia, R. J. Esguerra, K. H. Teoh, J. W. Teo, K. M. Wong, and T. B. Tan, "In vitro three-dimensional accuracy of digital implant impressions: the effect of implant angulation," International Journal of Oral and Maxillofacial Implants, vol. 32, no. 2, 2017, pp. 313– 321.

7. Burgess J, Lawson N, Robles A. "Comparing digital and conventional impressions," Journal of Inside Dentistry, vol. 9, no. 11, 2013, pp. 68-74.

8. Baig, Mirza Rustum. "Accuracy of impressions of multiple implants in the edentulous arch: a systematic review," International Journal of Oral Maxillofacial and Implants, vol. 29, no. 4, 2014, pp. 869-880.

9. F. S. Andriessen, D. R. Rijkens, W. J. van der Meer, and D. W. Wismeijer, "Applicability and accuracy of an intraoral scanner for scanning multiple implants in edentulous mandibles: a pilot study," Journal of Prosthetic Dentistry, vol. 111, no. 3, 2014, pp. 186–194.

10. Yuzbasioglu E, Kurt H, Turunc R et al, "Comparison of digital and conventional impression techniques: evaluation of patient's perception, treatment comfort, effectiveness and clinical outcomes," BMC Oral Health, vol 14, no. 1, 2014, pp. 1-7.

11. Mupparapu, Mel. "Intraoral Scanning and Digital Impression Techniques in Dentistry," Journal of Orofacial Sciences, vol. 11, no. 1, 2019, pp. 1-2.

12. Richert R, Goujat A, Venet L, Viguie G, Viennot S, Robinson P, Farges JC, Fages M, Ducret M, "Intraoral scanner technologies: a review to make a successful impression," Journal of Healthcare Engineering, 2017.

13. Chochlidakis KM, Papaspyridakos P, Geminiani A et al, "Digital versus conventional impressions for fixed prosthodontics: a systematic review and meta-analysis,"

Page 3.

Journal of Prosthetic Dentistry, vol 116, no. 2, 2016, pp. 184-190.

14. Marghalani A, Weber HP, Finkelman M, Kudara Y, El Rafie K, Papaspyridakos P, "Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy," The Journal of prosthetic dentistry, vol 119, no. 4, 2018, pp. 574-579.

15. Alshawaf B, Weber HP, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P, "Accuracy of printed casts generated from digital implant impressions versus stone casts from conventional implant impressions: A comparative in vitro study," Clinical oral implants research, vol 29, no. 8, 2018, pp. 835-842.

16. Lee SJ, Betensky RA, Gianneschi GE, Gallucci GO, "Accuracy of digital versus conventional implant impressions," Clinical Oral Implants Research, vol.26, no.6, 2015, 715-719.

17. Alikhasi M, Siadat H, Nasirpour A, Hasanzade M, "Three-dimensional accuracy of digital impression versus conventional method: effect of implant angulation and connection Type," International journal of dentistry, 2018.

18. Papaspyridakos P, Gallucci GO, Chen CJ, Hanssen S, Naert I, Vandenberg he B, "Digital versus conventional implant impressions for edentulous patients: accuracy outcomes," Clinical oral implants research, vol. 27, no. 4, 2016, pp. 465-472.

19. Gherlone E, Capparé P, Vinci R, Ferrini F, Gastaldi G, Crespi R, "Conventional Versus Digital Impressions for "All-on-Four" Restorations," International Journal of Oral & Maxillofacial Implants, vol.31, no. 2, 2016.

20. Tan MY, Hui Xin Yee S, Wong KM, Tan YH, Tan KB, "Comparison of Three-Dimensional Accuracy of Digital and Conventional Implant Impressions: Effect of Interimplant Distance in an Edentulous Arch,"

International Journal of Oral & Maxillofacial Implants, vol. 34, no. 2, 2019.

21. Menini M, Setti P, Pera F, Pera P, Pesce P, "Accuracy of multi-unit implant impression: traditional techniques versus a digital procedure," Clinical oral investigations, Vol. 22, no. 3, 2018, pp. 1253-1262.

22. Liu Y, Di P, Zhao Y, Hao Q, Tian J, Cui H, "Accuracy of multi-implant impressions using 3Dprinting custom trays and splinting versus conventional techniques for complete arches," International Journal of Oral & Maxillofacial Implants, vol 34, no. 4, 2019.

23. Cappare P, Sannino G, Minoli M, Montemezzi P, Ferrini F, "Conventional versus digital impressions for full arch screw-retained maxillary rehabilitations: A randomized clinical trial" International journal of environmental research and public health, vol. 16, no. 5, 2019, pp. 829.

24. Kim KR, Seo KY, Kim S, "Conventional open-tray impression versus intraoral digital scan for implant-level complete-arch impression," The Journal of Prosthetic Dentistry, vol. 122, no. 6, 2019, pp. 543-549.

25. Chochlidakis K, Papaspyridakos P, Tsigarida A, Romeo D, Chen YW, Natto Z, Ercoli C, "Digital Versus Conventional Full-Arch Implant Impressions: A Prospective Study on 16 Edentulous Maxillae," Journal of Prosthodontics, vol. 29, no. 4, 2020, pp. 281-286.

26. Ferrini F, Capparé P, Vinci R, Gherlone EF, Sannino G, "Digital versus traditional workflow for posterior maxillary rehabilitations supported by one straight and one tilted implant: a 3-year prospective comparative study," BioMed Research International, 2018.

27. Abdel-Azim T, Zandinejad A, Elathamna E, Lin W, Morton D, "The Influence of Digital Fabrication Options on the Accuracy of Dental Implant–Based Single Units and Complete-Arch Frameworks," International Journal of Oral & Maxillofacial Implants, vol. 29, no. 6, 2014.
28. Basaki K, Alkumru H, De Souza G, Finer Y, "Accuracy of Digital vs Conventional Implant Impression Approach: A Three-Dimensional Comparative In Vitro Analysis," International Journal of Oral & Maxillofacial Implants, vol. 32, no. 4, 2017.

29. Huang R, Liu Y, Huang B, Zhang C, Chen Z, Li Z, "Improved scanning accuracy with newly designed scan bodies: An in vitro study comparing digital versus conventional impression techniques for complete-arch implant rehabilitation," Clinical Oral Implants Research, 2020.

30. Rech-Ortega C, Fernández-Estevan L, Solá-Ruíz MF, Agustín-Panadero R, Labaig-Rueda C, "Comparative in vitro study of the accuracy of impression techniques for dental implants: Direct technique with an elastomeric impression material versus intraoral scanner," Medicina oral, patologia oral y cirugiabucal, vol. 24, no. 1, 2019, pp. e89.

31. Eliasson A, Örtorp A, "The accuracy of an implant impression technique using digitally coded healing abutments," Clinical implant dentistry and related research, vol. 14, 2012, pp. e30-38.

32. Amin S, Weber HP, Finkelman M, El Rafie K, Kudara Y, Papaspyridakos P, "Digital vs. conventional full-arch implant impressions: A comparative study," Clinical oral implants research, vol.28, no. 11, 2017, pp. 1360-1367.

33. Giménez B, Özcan M, Martínez-Rus F, Pradíes G, "Accuracy of a digital impression system based on active triangulation technology with blue light for implants: effect of clinically relevant parameters," Implant Dentistry, vol. 24, no. 5, 2015, pp. 498–504.