

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume – 5, Issue – 1, February - 2022, Page No. : 122 - 133

Management of amelogenesis imperfecta and Dentinogenesis imperfecta: A comprehensive review

¹Dr. Shreyasee Maity, PG Student, Department of Prosthodontics, Dayananda Sagar College of Dental Sciences, Bangalore, Karnataka.

²Dr. Sarandha DL, Head of Department, Dayananda Sagar College of Dental Sciences, Bangalore, Karnataka.

³Dr. Smitha Sharan, Reader, Dayananda Sagar College of Dental Sciences, Bangalore, Karnataka.

⁴Dr. Pradeep Chandra K., Senior Lecturer, Dayananda Sagar College of Dental Sciences, Bangalore, Karnataka.

Corresponding Author: Dr. Shreyasee Maity, PG Student, Department of Prosthodontics, Dayananda Sagar College of Dental Sciences, Bangalore, Karnataka.

Citation of this Article: Dr. Shreyasee Maity, Dr. Sarandha DL, Dr. Smitha Sharan, Dr. Pradeep Chandra K., "Management of amelogenesis imperfecta and Dentinogenesis imperfecta: A comprehensive review", IJDSIR- February -2022, Vol. – 5, Issue - 1, P. No. 122 – 133.

Copyright: © 2022, Dr. Shreyasee Maity, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License. Which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

The formation of teeth is a complicated process. It's the outcome of a complicated interaction between several genes and enzymes. The ectomesenchyme and epithelium are both involved. Any mutations in these genes can result in an abnormal odontogenesis process. The major goal in disorders like dentinogenesis imperfecta and amelogenesis imperfecta is to preserve as much dental structure as possible and retain the correct vertical dimension at an early stage so that a stable foundation for a more optimal treatment may be established later. Therefore, an interdisciplinary approach is required including prosthodontic, restorative and orthodontic treatment. This article presents the various treatment approaches that can be done in cases with amelogenesis imperfecta and dentinogenesis imperfecta.

Keywords: amelogenesis imperfecta dental anomalies; dentinogenesis imperfecta;

Introduction

The formation of teeth is a complicated process. It's the outcome of a complicated interaction between several genes and enzymes. The ectomesenchyme and epithelium are both involved. Any mutations in these genes can result in an abnormal odontogenesis process. Amelogenesis imperfecta and dentinogenesis imperfecta are two examples of such abnormalities. The cosmetic and functional restoration of children and adult patients with these problems is a huge task for a dentist. The distinctions in the characteristics and treatment possibilities of amelogenesis imperfecta and dentinogenesis imperfecta are the subject of this research review.

Corresponding Author: Dr. Shreyasee Maity, ijdsir, Volume - 5 Issue - 1, Page No. 122 - 133

Methods of collecting data: PubMed/Medline was used to conduct a systematic search, and publications from 2001 to 2021 were examined. The OR Boolean operator was used with the keywords amelogenesis imperfecta dentinogenesis imperfecta. There were 137 case studies, reviews, and systematic reviews found. Tables 1 and 2 summarise some of the case reports.

Results

Dentinogenesis Imperfecta: Barret was the first to discover dentinogenesis imperfecta in 1892. In the year 1892, Finn and Hodge did research on it. The term "hereditary opalescent dentin" was invented by Skiller.¹⁷ There are three different forms of Dentinogenesis imperfecta.

Table 1: Case reports on dentinogenesis imperfecta.

- DI with osteogenesis imperfecta (Type I)
- DI without osteogenesis imperfecta (Type II)
- Brandywine isolate (type III)

It is almost often inherited as an autosomal dominant characteristic. This illness is inherited in an autosomal dominant fashion, which means that one copy of the mutated gene in each cell is enough to produce it. Some researchers feel that dentinogenesis imperfecta types II and III, as well as dentin dysplasia type II, are all symptoms of the same disease. Dentin dysplasia type II has indications and symptoms that are remarkably similar to dentinogenesis imperfecta. Dentin dysplasia type II, on the other hand, affects primary teeth more than permanent teeth.¹⁸

Author/chief complaint	Oral examination and radiographic	Treatment plan
	features	
P Subramaniam etal (2008) ¹	Gingival recession with respect to 31, 41	Cyst enucleation with respect to 34, 46
16-year-old complained of brown-	Yellowish brown small teeth	Extraction of 11, 12, 16, 21, 64, 33, 34, 36,
coloured teeth [.]	Generalised attrition	43, 44 coma 46
	Pulp exposure in maxillary anterior	Root canal treatment with respect to 13, 23,
	Unilocular radio lucencies with respect to	22
	34, 46	Apexification with respect to 14
	Open apices with respect to premolars	Stainless steel crowns placed on erupted
	Missing with respect to 18,27,28	molars, polycarbonate crowns on premolars
		end pfm crowns in all other teeth
		Removable prosthesis given in upper and
		lower jaw for remaining edentulous area
Anil Goud (2011) ²	Missing with respect to 36, 46, 16, 27, 47	Full crowns and fpd for maxillary teeth
35-year-old complaints of occasional	Fpd with respect to 14, 15, 16, 17, 18, 33,	Overdenture reinforced with glass fibers for
chipping of teeth and dislodged FPD	34, 35, 43, 44, 45, 46, 47, 48	lower jaw
	Total obliteration off pulp chambers with	
	respect to 33, 34, 35, 43, 44, 45, 48	
Sedat Guven (2015) ³	Loss off many teeth	Extraction of impacted teeth
20-year-old complaints of aesthetic	No enamel on remaining teeth	Endodontic treatment on 13, 14, 15, 24,45
and chewing problems	Impacted teeth, teeth with short roots and	Periodontal treatment and oral hygiene
	large pulp chambers	instructions were given

		Overdentures for upper and pfm restorations
		for mandibular teeth were planned.
Sompop Bencharit (2014) ⁴	Composite resin restorations in anterior	Extraction with respect to #17, #32
33-year-old complaints of soft teeth	teeth	Dental implants with respect to #18, #30,
that easily break and had to get	Multiple missing posterior teeth	#31, #12 followed by implant supported
restorations done frequently	Remaining posterior teeth had fractured	crowns
	amalgam or composite resin restorations	Increase of vertical dimension by 2 mm with
	Poorly mineralised roots	the help of a splint
		Pfm crowns with respect to #3, #4, #5, #14
		All ceramic crowns with respect to #6, #7,
		#8, #9, #10, #11, #20, #21, #28, #29
Fan Fan (2019) ⁵	Amber crowns with severe attrition	Orthodontic treatment to correct the
20-year-old complaints of unesthetic	Gingival hyperplasia	malocclusion
appearance and severe wear of	Class i malocclusion with excessive	Periodontal treatment to lengthen maxillary
anterior teeth	vertical and horizontal overlap	and mandibular anterior crowns
		Smile designing to improve aesthetics
Shi Shi (2020) ⁶	Narrow short and bulbous crowns	Digital smile designing with full coverage
19-year-old complaint of dis coloured	Constricted cemen to enamel junction	crowns
teeth	Obliterated pulse chambers	
	Thinner and shorter roots	
Hamas at Ghedaff (2011) ⁷	Defective and decayed maxillary and	Extraction of #2, #7, #10, #15
	mandibular teeth	Implants placed followed by implant
	Maxillary overdentures on remaining	supported crowns
	teeth	
	Class 2 division 2 malocclusion	
	Decreased vertical dimension	
	Gummy smile	

Table 2: Case reports on amelogenesis imperfecta.

Author	Oral examination and radio graphical	Treatment plan
	features	
Mehnaz Arshad (2018) ⁸	Edematous gingiva	Orthognathic surgery to correct the open bite
27-year-old complained of	Dental caries	Implant placed with respect to 22
unattractive smile and difficult	Brown pitted teeth with no proximal	All other teeth were prepared to receive
mastication.	contact	crowns
	Open bite	
	Loss of vertical dimension	
	Missing upper left lateral	

•

Adilson Luiz (2011) ⁹	Anterior open bite	Orthodontic treatment
15-year-old complained of	Discoloration of teeth	Laminates for anterior teeth to improve
discoloration of his teeth.	Narrow maxilla	aesthetics
		Composite restorations on all posterior teeth
K malik (2012) ¹⁰	Reduced clinical crown height	Increase in vertical dimension by 3 mm
20-year-old female complained of	High smile line with an aesthetic	using a splint followed by permanent crowns
crooked gums and teeth.	appearance	at increased vertical dimension
	Loss of vertical dimensions	
Ian Brignell (2011) ¹¹	Pitting and unaesthetic appearance in	Smile analysis followed by wax up and
A 24-year-old complained of poor	anterior teeth	finally composite veneers
dental esthetics.		
Emin Murat (2010) ¹²	Discoloured teeth	Periodontally therapy to reduce gingival
26-year-old female patient presented	Hyperemic edematous gingiya	edema
with a chief complaint of discolored	Retained deciduous teeth	Increase of vertical dimension by 3 mm
teeth.	Short clinical crowns	followed by placement of permanent crowns
	Pulpal classifications	
	Worn out enamel	
	Loss of vertical dimension	
Muhammad Rizwan Nazeer $(2020)^{13}$	Loss of vertical dimension	Extraction of 3rd molars
A 20-year-old complained of	Grossly carious posterior teeth	Crown lengthening
unaesthetic smile, generalized	Anterior deep bite	Restoration of lost vertical dimension
sensitivity and difficulty in chewing	Reduced enamel thickness	Cementation of permanent crowns
Salima Visram (2006) ¹⁴	Class 2 Division I malocclusion	Veneers from canine to canine
15-year-old complained of appearance	Anterior open bite	Composite restorations on molars to increase
of his front teeth and sensitivity.	A-5 mbm over jet	vertical dimension
	Generalised nitting and discoloration	
15		
Neil S Nathwani (2010) ¹⁵	Gingival overgrowth	Gingivectomy to improve appearance
20-year-old complained of missing	Yellow discoloration of teeth with white	Night guard vital bleaching
maxillary lateral incisors, sensitivity,	flecking	Replacement of upper laterals with adhesive
poor colour and shape of the teeth and	Sensitivity	bridge from canine to canine.
the appearance of the gums.		
Vaibhav D. kamble ¹⁹	Gingivitis	Increase off vertical dimension by 4 mm
20-year-old complained of sensitivity	Thin enamel layer	with the help of a splint for 4 months
in his teeth.	Hypersensitive exposed dentin	followed by PFM crowns
	Loss of vertical dimension and increased	
	freeway space	

......

.....

. .

.....

.....

.

Clinical features

• Discoloration that ranges from a dark blue to a brownish colour.

• Localised mesodermal dysplasia affects both primary and permanent dentitions.

• Enamel is hypoplastic or hypocalcified, which causes it to fracture away from the dentin.

• The radiographic appearance of shell teeth is characterised by bulbous crowns, short roots, and a large pulp chamber.

Features of histology: Histologically the dentino-enamel intersection has less scalloping. Reduced scalloping allows even prophylaxis instrumentation to easily remove dentin from the tooth structure. Atypical dentin with uncalcified matrix and irregular tubules is another histiological hallmark of dentinogenesis imperfecta. Normal scalloping is found in DI patients with OI. Enamel loss is caused by flaws in the dentine.¹⁹

Amelogenesis imperfecta:

• Amelogenesis imperfecta refers to a group of illnesses that generate qualitative and quantitative enamel abnormalities without generating systemic problems. Other names for these teeth include hereditary brown enamel, hereditary enamel dysplasia, and hereditary brown opalescent teeth. Amelogenesis imperfecta is also related to many syndromes like Jalili syndrome, Enamel renal syndrome, Mc Gibbbon syndrome and Kohlschutter tonz syndrome.²⁰⁻²⁴

Classification:

1. Weinmann et al: two types based on phenotype 25

- Hypoplastic
- Hypocalcified

2. Darling etal: Five phenotypes based on clinical, microradiographic and histopathological findings.²⁰

• Hypoplastic

➢ Group 1 − generalised pitting

➢ Group2 − vertical grooves (now known to be X-linked

AI)

- Group 3 Generalised hypoplasia
- Hypocalcified
- ➤ Type 4A chalky, yellow, brown enamel

Type 4B – marked enamel discolouration and softness with post-eruptive loss of enamel

➤ Type 5 – generalised or localised discolouration and chipping of enamel

- 3. Nusier et al²⁶
- Hypoplastic
- Hypo maturation
- Hypocalcified
- Hypoplastic
- 4. Witkop et al.²⁷
- Type I: hypoplastic
- Type IA: pitted autosomal dominant
- Type IB: Local autosomal dominant
- Type IC: Local autosomal recessive
- Type ID: smooth autosomal recessive
- Type IE: smooth X-linked dominant
- Type IF: rough autosomal dominant.
- Type IG: agenesis autosomal recessive

Genetic aetiology: febrile fever, vitamin deficiency

Local etiology: Fluoride intake, infection or damage on the local level

Clinical features

Hypoplastic: Enamel matrix thickness reduction with normal mineralization caused by failure during the secretory stage.

Enamel thickness is reduced.

Enamel appears normal and is less prone to wear.

The size of the teeth is reduced

Enamel that is irregular, rough, or pitted

Enamel and dentin appear normal on radiographs.²⁶

Hypo maturation: Caused by inadequate protein removal from the enamel matrix during the maturation stage, resulting in enamel that is full thickness but fragile and fails prematurely.

Discoloration ranging from yellow brown to red brown, with a mottled look.

Enamel has the same radiodensity as dentin radiographically.²⁶

Hypocalcified: Results from insufficient transport of calcium ions (Ca2+) into the forming enamel, resulting in a defect in the enamel mineralization process with normal matrix development.

Normal thickness with enamel translucency loss

Enamel that is hypo mineralized and has a mushy cheesy consistency

Enamel is quickly decomposable.

• Teeth appear darker.

• Enamel is less radiopaque than dentin on x-rays.²⁶ **Discussion:**

Considerations for Treatment: Both amelogenesis imperfecta and dentinogenesis imperfecta have similar treatment goals.

- Getting rid of infection causes or getting rid of pain
- Bringing back the aesthetics
- Defending teeth against wear and caries
- Maintaining or enhancing performance
- Where necessary, improving malocclusions
- Wherever feasible, tooth tissue is preserved.

Many psychosocial issues have an impact on the patient, including variances in appearance, low self-esteem, poor academic performance, and speech disorders, all of which can contribute to social isolation. In such cases, strong family support and supportive peer interactions are essential. Dental and medical care has been found to improve a patient's social well-being and efficiency.^{28,29}

Dentinogenesis imperfecta: Reduced vertical dimension, loss of functional occlusion, altered expression, tooth sensitivity, poor aesthetics, and excessive attrition are common clinical findings in cases of dentinogenesis imperfecta. In the temporomandibular joint, there is also pain and a grinding sensation.

Preventive treatment: Because teeth with DI have exposed dentin, which is more susceptible to caries, oral hygiene recommendations, fluoride application, and frequent dental exams should be followed to avoid cavities. They should be continuously examined after the permanent dentition emerges to keep an eye on tooth wear and intervene if necessary. Stainless steel crowns, preveneered stainless-steel crowns, or composite strip crowns can be used in the primary dentition.³⁰ If the child has lately presented, the only option is an overdenture, which must be evaluated and rebuilt as the infant grows. Implants and other costly treatments should be avoided during the important stages of growth and puberty. Adolescent patients should be treated more quickly. This gives the patient more immediate aesthetic, functional, and therapeutic help.

Prosthodontic treatment: Discoloration of teeth and bonding of various types of restorations are challenges that must be overcome while restoring such teeth. The enamel may debond from the dentine, making the bonding of the repair to the enamel uncertain. The hybrid layer that forms may also be harmed as a result of the dentine's changed nature. In these situations, resin modified Glass ionomer cement bonds better than traditional resin-based adhesives. This is due to the fact that they create genuine bonds with metal ions rather than the hybrid layer.³¹ Prior to long-term treatment, provisional restorations with fixed or removable prosthesis should be offered. The patient will be motivated to complete the treatment as a result of this. Overdentures, traditional fixed or removable

© 2022 IJDSIR, All Rights Reserved

prostheses, or implant-supported fixed or removable prostheses provide a more realistic face shape, arch relationship, and smile line for the patient.^{32,28}. Because implant therapy is contraindicated in young individuals, removable dentures may be a viable option for replacing missing teeth. Overdentures that are tooth-supported can be used to assist preserve alveolar bone height. However, there are significant drawbacks, such as denture irritation, plaque collection, and gingivitis. In the case of teeth with short roots, set partial dentures are not indicated. Crowns are not recommended for teeth with severe DI, short roots, and severe cervical constriction. Such teeth frequently develop necrotic, and endodontic treatment is impossible in such circumstances due to the difficulty in locating the canal. Veneers are frequently utilized in individuals with dentinogenesis imperfecta, although they appear to be more beneficial in people with amelogenesis imperfecta. This is owing to the above-mentioned bonding difficulty, well as the discoloration exhibited in certain as circumstances which are difficult to conceal with veneers. This has resulted in impaired aesthetics in several circumstances. This can be avoided by incorporating an opaque porcelain layer into the restoration or cementing with opaque resin cement. Even with these, though, there is a loss of translucency, which can affect aesthetics once again.³³ Another option is to employ zirconia coping, which can then be covered with feldspathic porcelain.³⁴ Composite veneers, on the other hand, have the advantage of not requiring tooth structure removal and being relatively rapid. Young patients can benefit from composite veneers since they can be employed in situations with big pulp chambers.³¹

Implant treatment: Bone quality and quantity are unaffected and are comparable to people without DI. Patients with DI type I, on the other hand, have osteogenesis imperfacta, yet implants have been successful in these patients. Due to the presence of short roots, patients with DI may have a reduction in bone volume. As a result, it may be necessary to undertake guided bone regeneration prior to implant implantation. Bisphosphonate treatment is commonly used in DI type I patients. This increases the risk of jaw osteonecrosis.³⁵

Endodontic therapy: Endodontic treatment is not possible since the pulp chambers have been obliterated due to deposition of reparative dentine. Enlarged pulp chambers can occur after type III DI endodontic therapy. Because morphologic changes in the dentine may occur, increasing the risk of fracture, the use of a cast post and core is not recommended. In the event of periapical infection, periapical curettage with retrograde filling may be performed.³⁶

Amelogenesis imperfecta: The most common symptoms of amelogenesis imperfecta include sensitivity to hot and cold, decreased aesthetics due to discolouration of the mandibular and maxillary anterior teeth, and trouble chewing. Clinical features include enamel wear with exposed dentin, a lack of proximal connections, and a loss of vertical dimension. In some cases, an anterior and posterior open bite might be detected. In cases of amelogenesis imperfecta, a substantial proportion of teeth remain unerupted.

Preventive treatment: Temporary stainless-steel crowns can be put at a younger age as a preventive procedure. As soon as the incisors begin to erupt, they can be fitted with resin crowns.²⁶ They can be changed once the gingival margin is accessible. Tooth whitening products that release more than 0.1 percent hydrogen peroxide cannot be used in patients under the age of 18 according to a European Union regulatory amendment made in 2012. In pedo patients, this makes essential bleaching impossible.³⁷

Restorative treatment: In individuals with amelogenesis imperfecta, the longevity of restorations is significantly

© 2022 IJDSIR, All Rights Reserved

reduced, and this is related to the severity of the condition. Restorations have been observed to last roughly 50% of the time in these circumstances, and the rate of replacement is 2.5 times higher than in normal or unaffected people. When compared to other kinds of amelogenesis imperfecta, the hypoplastic type has a higher rate of restored survival. The most common reason for restorative failure is tooth fracture, which can be caused by poor enamel quality and quantity. As a result, etching is diminished, and bond strength suffers as a result. The increasing protein content of the enamel may be to blame Table 3: similarities and differences between ai and di.

for the decreased bond. Adhesive bonding can improve bond strength. Treatment with direct composite resin may be used to buy time until permanent restorations may be made at a later age. Bleaching with 10% carbamide peroxide can improve the appearance, but it comes with a slew of drawbacks, including sensitivity, gingival ulceration, and shade reversion. Stopping the treatment or lengthening the time between bleaching cycles, as well as employing rubber dams and correctly extended night guards, can all help to prevent these problems.

	Amelogenesis imperfecta	Dentinogenesis imperfecta
Genes affected	Amelx, fam83h, klk4, mmp20	Dspp
Colour of tooth	Yellow brown or orange on eruption-stained	Dusky blue to brownish discolouration
	brown to black with time	
Affects	Enamel	Dentin
Presence of osteogenesis	Not associated with osteogenesis imperfecta	Associated with oi in some cases
imperfecta		
Radiographic features	Enamel and dentine have similar radio opacity or	Bulb shaped crowns with cervical
	enamel has reduces opacity	constrictions
		Roots spiked
		Obliteration of pulp chamber (shell teeth
		appearance)
	Pitted enamel of grooves presents on enamel	No grooves
	Autosomal dominant, recessive, X linked mode	Autosomal dominant
	of inheritance	
	Open bite common	Not generally seen
	Dentin not affected	Opalescent dentin
	Teeth small with spacings	Open contacts
	Enamel can be removed with prophylaxis	Enamel may split readily when dentin is
	instrument	subjected to stress

Prosthetic treatment: Due to the existence of significant pulp horns and expanded pulp chambers, the amount of preparation required when treating younger patients must be kept in mind. Otherwise, the pulp may become irritated as a result of the minimal preparation.³⁷ Crown

lengthening can be done in cases of microdontia, however these treatments are difficult since there may be greater sensitivity after surgery, and they might be complex due to the close closeness of the roots.³⁹ Gold onlays or full coverage crowns can be used on the back teeth. Crowns

made of metal, PFM, and stainless steel are also available. To maintain as much dental structure as feasible, porcelain should be used exclusively in aesthetic portions and metal in unaesthetic areas.³⁹ All-ceramic crowns with high strength, like as zirconia, have also been employed, however the preparation for such crowns frequently results in pulpal pathology.⁴⁰ Due to the loss of vertical dimension in complex instances requiring complete mouth rehabilitation, diagnostic wax up is required. In some circumstances, crown lengthening may be necessary. Porcelain and composite veneers can also be used to improve a patient's look.³⁸

Implant treatment: In situations of AI and DI in young children, particularly adolescent patients, implants are not the primary line of treatment. They should only be regarded as a therapy option for patients who have reached the end of their growth cycle. It is prescribed for people who have advanced cases of AI and whose teeth are regarded irreversible. Reduced interproximal space due to short roots and clinical crowns might be a problem when inserting implants in instances with AI.³⁸

Orthodontic treatment: ZManaging the deficient enamel or dentin in such circumstances is a challenge in orthodontic treatment. The goal is to get the teeth in a better position to implant the restorations, not to get them in ideal position. First, we must establish whether the damaged enamel can survive the stress applied during appliance placement and removal. To improve application retention, plastic brackets, GIC base adhesives, and typical banded appliances can be employed. Because the enamel is not consistent, more detailed bends are required at the conclusion of the orthodontic treatment.³⁸

Modes of treatment

The following is based on the clinical findings:

> In the case of an open bite, orthodontic treatment should be followed by prosthodontic rehabilitation.

> In the event that the vertical dimension is lost, a prosthodontic treatment with permanent crowns should be planned to restore it.

Bleaching or porcelain veneers might improve your appearance.

Based on the type of amelogenesis imperfecta.

 \gg Bleaching can be done in situations with hypoplastic amelogenesis imperfecta. Because the enamel is strong enough to hang on to bonded restorations like porcelain veneers, they can be used to protect teeth from caries.

Bonded restorations are not recommended in situations of Hypo maturation and Hypocalcified amelogenesis imperfecta because they can cling on to the enamel. As a result, full coverage crowns are a treatment option that can be counted on.

Conclusion

The major goal in disorders like dentinogenesis imperfecta and amelogenesis imperfecta is to preserve as much dental structure as possible and retain the correct vertical dimension at an early stage so that a stable foundation for a more optimal treatment may be established later. Adhesion to AI and DI-affected teeth is unpredictably variable, but investigations have demonstrated that it is enough. The major goal of treatment should be to restore function and appearance, as well as to improve the patient's psychosocial well-being and productivity. Treatment options are determined by the severity of the disease, as well as the patient's age, socioeconomic status, and motivation. A well-thought-out interdisciplinary strategy can significantly improve a patient's quality of life.

Declaration of Competing Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Subramaniam, P., Mathew, S. and Sugnani, S.N., 2008. Dentinogenesis imperfecta: a case report. Journal of Indian Society of Pedodontics and Preventive Dentistry, 26(2), p.85.

2. Goud A, Deshpande S. Prosthodontic rehabilitation of dentinogenesis imperfecta. Contemp Clin Dent. 2011;2(2):138-141.

3. Demirci, Fatih & Tanik, Abdulsamet & Guven, guven & Gul, Mehmet. (2014). Oral rehabilitation of a young adult with hypoplastic amelogenesis imperfecta: A clinical report. Journal of International Dental and Medical Research. 7. 33-36.

4. Sompop Bencharit, Michael B. Border, C. Russell Mack, Warren C. Byrd, John T. Wright; Full-Mouth Rehabilitation for a Patient with Dentinogenesis Imperfecta: A Clinical Report. J Oral Implantol

5. Fan, Fan & Li, Ning & Huang, Shengbin & Ma, Jianfeng. (2019). A multidisciplinary approach to the functional and esthetic rehabilitation of dentinogenesis imperfecta type II: A clinical report. The Journal of Prosthetic Dentistry

6. Shi S, Li N, Jin X, Huang S, Ma J. A Digital Esthetic Rehabilitation of a Patient with Dentinogenesis Imperfecta Type II: A Clinical Report. Journal of Prosthodontics. 2020;29(8):643-650.

7. Dam H, Papaspyridakos P, Chen C, Benic G, Gallucci
G, Weber H. Comprehensive Oral Rehabilitation of a
Patient With Dentinogenesis Imperfecta. Clinical
Advances in Periodontics. 2011;1(1):16-22.

8. Arshad M, Shirani G, Mahgoli H, Vaziri N. Rehabilitation of a patient with amelogenesis imperfecta and severe open bite: A multidisciplinary approach. Clinical Case Reports. 2018;7(2):275-283.

9. Ramos A, Pascotto R, Filho L, Hayacibara R, BoselliG. Interdisciplinary treatment for a patient with open-bite

malocclusion and amelogenesis imperfecta. American Journal of Orthodontics and Dentofacial Orthopedics. 2011;139(4):S145-S153.

10.Malik K, Gadhia K, Arkutu N, McDonald S, Blair F. The interdisciplinary management of patients with amelogenesis imperfecta - restorative dentistry. Br Dent J. 2012 Jun 8;212(11):537-42.

11.Brignall I, Mehta SB, Banerji S, Millar BJ. Aesthetic composite veneers for an adult patient with amelogenesis imperfecta: a case report. Dent Update. 2011 Nov;38(9):594-6, 598-600, 603.

12.Canger, Emin & Celenk, Peruze & Yenisey, Murat & Odyakmaz, Selcen. (2010). Amelogenesis imperfecta, hypoplastic type associated with some dental abnormalities: A case report. Brazilian dental journal.

13.Nazeer MR, Ghafoor R, Zafar K, Khan FR. Full mouth functional and aesthetic rehabilitation of a patient affected with hypoplastic type of amelogenesis imperfecta. J Clin Exp Dent. 2020 Mar 1;12(3):e310-e316.

14. Visram S, McKaig S. Amelogenesis imperfectaclinical presentation and management: a case report. Dent Update. 2006 Dec;33(10):612-4, 616.

15.Nathwani NS, Kelleher M. Minimally destructive management of amelogenesis imperfecta and hypodontia with bleaching and bonding. Dent Update. 2010 Apr;37(3):170-2, 175-6, 179.

16.Kamble, Vaibhav & Parkhedkar, Rambhau. (2013). Multidisciplinary Approach for Restoring Function and Esthetics in a Patient with Amelogenesis Imperfecta: A Clinical Report. Journal of clinical and diagnostic research.

17.Shetty RM, Goyal A, Kandelwal M, Deoghare A, Hanumanta S, Parakh K. Dentinogenesis Imperfecta (Hereditary Opalescent Dentin) in Primary Dentition: A Case Report. Int J Dent Med Res 2015;1(5):87-88.

18. M, McDonnell S, MacKie I, Dixon M. Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia. Orphanet Journal of Rare Diseases. 2008;3(1):31.

19.Güven S, Demirci F, Tanik A, Koparal M. Prosthetic treatment in dentinogenesis imperfecta type II: a case report. Acta Odontol Turc 2016;33(2):86-90

20.Jalili IK. Cone-rod dystrophy and amelogenesis imperfecta (Jalili syndrome): phenotypes and environs. Eye (Lond). 2010 Nov;24(11):1659-68.

21.Martelli h, coletta r, dias v, maia c, martelli d, násser l. Op - amelogenesis imperfecta and jalili syndrome: a case report. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2017;123(2):e33.

22.Rajathi JM, Austin RD, Mathew P. McGibbon Syndrome: a report of three siblings. Indian J Dent Res. 2013 Jul-Aug;24(4):511-4.

23.Debnath K, Couthino A, Chatterjee A, Shenoy S. Enamel renal gingival syndrome: A rare case report. J Indian Soc Periodontol. 2019;23(1):69-72.

24.Bhesania D, Arora A, Kapoor S. Enamel renal syndrome with associated amelogenesis imperfecta, nephrolithiasis, and hypocitraturia: A case report. Imaging Sci Dent. 2015;45(3):181-185.

25.Nusier M, Yassin O, Hart TC, Samimi A, Wright JT. Phenotypic diversity and revision of the nomenclature for autosomal recessive amelogenesis imperfecta. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004 Feb;97(2):220-30

26.Sabandal MM, Schäfer E. Amelogenesis imperfecta: review of diagnostic findings and treatment concepts. Odontology. 2016 Sep;104(3):245-56

27.Crawford PJ, Aldred M, Bloch-Zupan A. Amelogenesis imperfecta. Orphanet J Rare Dis. 2007; 2:17. 28.Hickey A, Salter M. Prosthodontic and psychological factors in treating patients with congenital and craniofacial defects. The Journal of Prosthetic Dentistry. 2006;95(5):392-396.

29.Chen CF, Hu JC, Bresciani E, Peters MC, Estrella MR. Treatment considerations for patient with Amelogenesis Imperfecta: a review. Braz Dent Sci. 2013;16(4):7-18.

30.Akhlaghi N, Eshghi AR, Mohamadpour M. Dental Management of a Child with Dentinogenesis Imperfecta: A Case Report. J Dent (Tehran). 2016;13(2):133-138.

31.Soliman S, Meyer-Marcotty P, Hahn B, Halbleib K, Krastl G. Treatment of an Adolescent Patient with Dentinogenesis Imperfecta Using Indirect Composite Restorations - A Case Report and Literature Review. J Adhes Dent. 2018;20(4):345-354.

32.Syriac G, Joseph E, Rupesh S, Mathew J. Complete Overlay Denture for Pedodontic Patient with Severe Dentinogenesis Imperfecta. Int J Clin Pediatr Dent. 2017;10(4):394-398.

33.Rafeek RN, Paryag A, Al-Bayaty H. Management of dentinogenesis imperfecta: a review of two case reports. Gen Dent. 2013 May-Jun;61(3):72-6.

34. Ayyildiz S, Sahin C, Akgün OM, Basak F. Combined treatment with laser sintering and zirconium: a case report of dentinogenesis imperfecta. Case Rep Dent. 2013; 2013:745959.

35.Binger, T & Rücker, M & Spitzer, W. (2006). Dentofacial rehabilitation by osteodistraction, augmentation and implantation despite osteogenesis imperfecta. International journal of oral and maxillofacial surgery. 35. 559-62.

36.Monteiro, J., Ashley, P.F. & Parekh, S. Vital bleaching for children with dental anomalies: EAPD members' survey. Eur Arch Paediatr Dent 21, 565–571 (2020).

37.Hilton TJ. Keys to clinical success with pulp capping: a review of the literature. Operative dentistry. 2009 Sep;34(5):615-25

38.Patel M, McDonnell ST, Iram S, MF WY C. Amelogenesis imperfecta-lifelong management. Restorative management of the adult patient. British dental journal. 2013 Nov;215(9):449-57.

39.Lindunger A, Smedberg J I . A retrospective study of the prosthodontic management of patients with amelogenesis imperfecta. Int J Prosthodont 2005; 18: 189– 194.

40.Siadat H, Alikhasi M, Mirfazaelian A. Rehabilitation of a patient with amelogenesis imperfecta using allceramic crowns: a clinical report. J Prosthet Dent 2007; 98: 85–88.