

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume – 4, Issue – 6, November - 2021, Page No. : 130 - 139

Erosivity Potential of Paediatric medicament on deciduous teeth: A systemic review

¹Dr. Aiman Haider, Post graduate, Department of Pediatric & Preventive dentistry, Rishiraj college of Dental sciences and Research center, Bhopal, Madhya Pradesh, India

²Dr. Arpana Bansal, Professor & HOD, Department of Pediatric & Preventive Dentistry, Rishiraj college of Dental sciences & Research center, Bhopal, Madhya Pradesh, India

³Dr. Babita Niranjan, Reader, Department of Pediatric & Preventive Dentistry, Rishiraj college of Dental sciences & Research center, Bhopal, Madhya Pradesh, India

⁴Dr. Kartik Choudhary, Reader, Department of Pediatric & Preventive Dentistry, Rishiraj college of Dental sciences & Research center, Bhopal, Madhya Pradesh, India

⁵Dr. Prachi Sijeria, Reader, Department of Pediatric & Preventive Dentistry, Rishiraj college of Dental sciences & Research center, Bhopal, Madhya Pradesh, India

Corresponding Author: Dr. Aiman Haider, Post graduate, Department of Pediatric & Preventive dentistry, Rishiraj college of Dental sciences and Research center, Bhopal, Madhya Pradesh, India

Citation of this Article: Dr. Aiman Haider, Dr. Arpana Bansal, Dr. Babita Niranjan, Dr. Kartik Choudhary, Dr. Prachi Sijeria," Erosivity Potential of Paediatric medicament on deciduous teeth: A systemic review", IJDSIR- November - 2021, Vol. – 4, Issue - 6, P. No. 130 – 139.

Copyright: © 2021, Dr. Aiman Haider, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License. Which allows others to remix, tweak, and build upon the work non commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

Dental erosion is well- recognized problem of younger population that has apparently increased in the last few decades. One of the reasons for the rapid increase in erosion is the widespread and long term use of Pediatric medicaments especially in the form of liquid suspension syrups. A number of recent studies have confirmed that the use of Pediatric liquid medicament demineralizes the enamel surface of primary tooth which leads to dental erosion. For this systemic review an electronic search through PubMed, Medline, and National medical library was made and a total of 1431 articles were retrieved from the year 2010 to 2020. Later the search strategy was focused on original research, in vitro studies, randomised control trials that results in 21 studies that are relevant to this review. 90% of the most commonly used pediatric liquid medicaments are erosive and cariogenic. Hence care must be taken while prescribing these sweetened medicaments in children. A direct co-relation was found between the use of pediatric medicaments (especially liquid suspensions) and dental erosion. Long term use of PLM causes demineralization of the enamel surface of primary teeth. **Keywords**: Dental erosion, PLM, Pediatric liquid medicaments, caries, erosivity potential, pediatric medicines, systemic review, review

Introduction

Dental erosion is an irrevocable loss of tooth structure which doesn't involve microorganisms. It is a wellrecognized problem that has apparently increased among the younger population in last few decades followed by dental caries.^[1] At present there are a lot of intrinsic as well as extrinsic factors involved in erosion. Intrinsic factors include acidic gastric fluid coming into contact with the oral cavity, in patients suffering from bulimia, gastrointestinal reflux disease and extrinsic factors include the consumption of acidic foods (e.g. citrus, soft drinks, and salad dressings)^[2]. Apart from the edibles one of the major extrinsic factor entailed in causing erosion nowadays is acidic drugs. The widespread use of commercially available pediatric medicaments has been reported as the most common source of erosion in children.^[3] The medicaments are prepared with a lot of additives including sugars. It was used to mark the acidic taste of medicine making it more palatable and acceptable by the child patient. This also changes the plaque pH. Since enamel in primary teeth is porous, less prismatic and less calcified so it gets easily dissolved by the acids present in the pediatric remedies.^[4] Past reports have shown that the frequency and duration of these medicaments has a dramatic effect on the prevalence of erosion and caries.¹ The use of liquid suspensions in medicaments is a daily occurrence for many children. The ill effect of these medicaments mostly goes unnoticed and later on progresses in permanent dentition.^[5&6] So far, many studies have confirmed that PLM's results in erosion as well as caries in little one's but a systemic summaries of their methodologies and result are lacking.So the aim of this review is to summarize the data

related to type of PLM that are causing erosion in pediatric patients.

Review methodology

A literature review was performed after conducting an electronic search through PubMed, Medline (from 2010-2020) and National medical library to identify studies related to the erosive effect of pediatric liquid medicaments.

Search strategy was to compile past research that is relevant to the use of PLM in children

Keywords used are: PLM, Pediatric liquid medicaments, dental erosion, erosivity of PLM.

Out of total 1431, 804 articles were found to be studying the erosivity potential of liquid medications.

The search result was further narrowed to original research, in vitro studies, randomised control trials, resulting in 21 studies relevant to research question.

Result

Our search identified 1431 articles from three sources namely- PubMEd (NCBI), Medline, National medical library respectively (**Illustration 1**) From the year 2010-2020. From this 21 articles were identified for full text review including original research, randomised control trial and in-vitro comparative studies. Rest 1410 publications were excluded, owing to reason of duplication, irrelevant, repeated and abstract review only. From the above search strategy it was concluded that the use of pediatric medicaments leads to loss of enamel surface of primary teeth. Erosivity potential is present in pediatric medications especially the liquid suspensions of the medicaments.

Discussion

This systemic review identifies the causative factor behind dental erosion & dental caries in primary teeth that had become a major problem among the younger population. For this review an electronic search was made

Page

to obtain data on the erosive potential of commonly used pediatric medicaments from the year 2010-2020 (Illustration 1).

The included studies in the current review provide information about the erosivity & cariogenicity potential of commonly used paediatric medications.

Dental erosion is an irreversible loss of dental hard tissue by a chemical process without bacterial involvement While dental caries is caused by cariogenic bacteria, which adhere to the tooth surface and are part of dental plaque biofilm.^[13] Dental erosion is considered as a second major reason for tooth wear in children first being the dental caries. The logic behind the fact that caries and erosion are most commonly seen in primary dentition is that the primary teeth is porous, less prismatic and less calcified so it is easily dissolved by acids when compared with permanent teeth.^[2]

Liquid suspensions are most commonly used in pediatric practice because they are readily accepted by the child due to the presence of increase amount of sugars & other additives that makes it more palatable & acceptable by the pediatric patient^[1]. These additives are considered as inactive ingredient with high acidic pH which leads to demineralization of the primary enamel surface & cause sensitivity, unaesthetic appearance and many more.

The additives may add significantly to dental caries in the child patient.^[4] In past years not much of importance was given to the possible erosivity & cariogenicity potential of pediatric medicaments so the present review highlights the scientific reports by various authors Izabel et al (2010), Arora et al (2012), Xavier et al (2013), Nankar et al (2014), Scatena et al (2014), Tupali et al (2014), Saeed et al (2015), Kiran et al (2015), Lussi et al (2015), Kulkarni et al (2016), Valinoti et al (2016), Sowmya K et al (2016) Sudhir et al (2017), Vdihi Shah et al (2017), Deepthi M et al (2018), Elham et el (2018), Yun gyeong

et al (2019), Nangalia et al (2019), Thejeswar et al (2020), Siddiq H et al (2020) that have found association between dental erosion with the long term use of paediatric medicaments (Table 1)

Beside the studies analysing the erosive effect of pediatric medicaments some studies have demonstrated the cariogenic potential of these medicaments too (Table 2) like Izabel et al (2010), Xavier et al (2013), Nankar et al (2014), Saeed et al (2015), Valinoti C et al (2016), Sowmya K et al (2016), Deepthi M et al (2018) and Elham et al (2018).

The result of this review confirmed that long term use of liquid medications leads to loss of mineral content of tooth.

Conclusion

Nowadays, dental erosion is commonly encountered in children taking various paediatric medicament that may progress in permanent dentition if not properly diagnosed. This systemic review provide evidence for the erosivity and cariogenicity capacity of the long term use of common pediatric medications. For prevention of the same greater care should be taken while prescribing these medications. Parents and professionals should enhance their knowledge on the ill effect of the remedies which are used in our day to day practice.

Clinical Significance

Care must be taken while prescribing these formulations in pediatric patients. Alternate substitute must be recommended and awareness must be spread among parents like rinsing mouth right after medicament ingestion might deduce the ill-effects. Pediatric dentist play a key role in identifying these lesion at the earliest, finding the cause behind it and treating it with the best of abilities.

List of abbreviations

PLM: Paediatric liquid medicament

PLA: Paediatric liquid analgesics

References

- Nankar M, Walimbe H, Bijle MNA, Kontham U, Kamath A, Muchandi S. Comparative Evaluation of Cariogenic and Erosive Potential of Commonly Prescribed Pediatric Liquid Medicaments: An in vitro Study. J Contemp Dent Pract 2014;15(1):20-25.
- Mittal S, Singh BP, Sharma AK, Mittal K, Justa A, Vaid P. Surface changes of primary tooth enamel by commonly used pediatric liquid medicaments: A scanning electron microscope study. J Pediatr Dent 2017;5:14-20.
- STEPHEN R.M: Changes in hydrogen ion concentration on tooth surfaces and in carious lesions.
 J. AM. Dent. Association. Vol. 27, 1940; 718–728.
- STEPHEN R.M: Intra oral hydrogen ion concentration associated with dental caries activity. J. Dent Res. vol. 23, 1944; 257
- ROBERT J. FEIGAL AND MARK E. JENSEN: Dental caries potential of liquid medications. Pediatrics. vol. 68, 1981; 416–419.
- SOOD P.B.: Acidogenic potential of Indian sweet food. J. Indian Dent Assoc. 1978; 3:332-337
- Izabel R, Oliveira CA, Alessandro CA, Cavalcanti L Fernandes F.Erosive and cariogenic potential of pediatric antihistaminic medicine. Passo Fundo RS Braz 2010;15(3):257-262.
- Arora R, Mukherjee U, Arora V. Erosive Potential of Sugar Free and Sugar Containing Pediatric Medicines Given Regularly and Long Term to Children. Indian J Pediatr. 2012;79(6):759-63.
- Xavier et al.: Erosive and cariogenicity potential of pediatric drugs: study of physicochemical parameters. BMC Oral Health 2013 13:71.
- Scatena C, Galafassi D, Gomes MJ,Borsatto M, Serra M. In Vitro Erosive Effect of Pediatric Medicines on

Deciduous Tooth Enamel.Braz.Dent.J. 2014;25(1): 22-27

- Tupalli AR, Satish B, Shetty BR, Battu S, Kumar JP, Nagaraju B Evaluation of the Erosive Potential of Various Pediatric Liquid Medicaments: An In-vitro Study. J Int Oral Health 2014;6(1):59-65.
- Saeed S, Bshara N, Trak J, Mahmoud G. An in vitro analysis of the cariogenic and erosive potential of pediatric liquid analgesics. J Indian Soc Pedod Prev Dent 2015;33:143-6.
- Kiran JK, Vinay C, Uloopi S K, Chandra SR, Madhuri V, Alla RK. Erosive Potential of Medicated Syrups on Primary Teeth: An In vitro Comparative Study.Br.Med.J.2015;5

 (4):525-532.
- Lussi A, Carvalho TS .Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth. PLoS ONE;10(12): 1-15.
- 15. Kulkarni P, Anand A, Bansal A, Jain A, Tiwari U, Agrawal S. Erosive effects of pediatric liquid medicinal syrups on primary enamel: An in vitro comparative study. Indian J Dent 2016;7:131-3.
- Valinoti CA,Costa LC,Farah A,Sousa PV, Gonçalves FA,Maia CL.Are Pediatric Antibiotic Formulations Potentials Risk Factors for Dental Caries and Dental Erosion?.Open Dent.2016;10:420-430.
- Gaber M,Dowidar M,Talaat M.The effect of ccp-acp on the surface microhardness of primary tooth enamel eroded by antihistamine syrup (in vitro study).Alex Dent J 2016;41:86 91.
- Sowmya K ,Pranitha V, Dwijendra K S,Pujita C, Nagarjuna G. Evaluation of the cariogenic and erosive potential of pediatric liquid analgesics: An invitro study. Int. J. Pharm. Med. Res. 2016; 4(3):317-320

- Shah V, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Bhandi S. Comparative Evaluation of the Four most commonly used Pediatric Liquid Formulations in Ahmedabad City: An in vitro Study. World J Dent 2017;8(3):190-195.
- Deepthi, M,Hiremath M,Srinath S,Nagarathna J.Analysis of cariogenic and erosive potential of pediatric antiepileptic liquid medicaments: An In vitro study. J Indian Assoc Public Health Dent; 2018;16(2):169.
- Elham FM, Omar MO, Erosive and cariogenic potential of various pediatric liquid medicamentson primary tooth enamel: A SEM study. Dent Med Probl;2018;55(3):247–254.

- 22. Yungyeong I,Chung HK.Effects of commercial dry syrups on tooth surfaces.J Korean Acad Oral Health;2019;43(2):78-82.
- 23. Nangalia S, Maitinz N,Kaushik S, Verma A.Evaluation of effects of liquid medicinal syrups on primary enamels of pediatric patients:Int.j.med.Res.2019;5(6):139-142.
- Thejeswar EP, Subramanian EMG.Estimation of Sugar Content in Various Brands of Paracetamol Syrups.Int.J.Sci.Res.2020;5(2):270-273.
- 25. Siddiq H, Pentapati KC, Shenoy R, Velayutham A, Acharya S. Evaluation of sugar content and erosive potential of the commonly prescribed liquid oral medications. Pesqui Bras Odontopediatria Clin Integr. 2020; 20;e5025. ínica Integrada 2020; 20:e5025.

Legend Table and Figures

Table 1: Overview of studies related to Erosivity potential of Pediatric liquid medicaments

Year	Author	Aim of the Study	Conclusion	Medicament
2010	Izabel et al ^[7]	To evaluate the erosive and	Antihistaminic medicine	Dexamethasone,
		cariogenic potential of	have high sugar content	Loratadine, agasten,
		antihistaminic medicine	and has erosive and	cetirtec,
			cariogenic potential	dexchlorphenarmine
				maleate
2012	Arora et al ^[8]	To evaluate erosive potential of	Pediatric sugar free	Paracetamol, ibuprofen,
		sugar free & sugar containing	medicines were not more	paracetamol + ibuprofen,
		pediatric medicine given regulary	erosive than sugar	amoxicillin, amoxiclav,
		& long term to children	containing medicine	metrogen
2013	Xavier et al ^[9]	To evaluate the erosive and	Drug showed	Analgesics,
		cariogenicity potential of	physiochemical	antibacterials, anti
		pediatric drugs: study of	characteristics indicative	convulsants, antiemetic,
		physiochemical parameters	of a cariogenic and	antihistamines,
			erosive potential on dental	antiparasites,
			tissues	antitussives,
				corticosteroids
2014	Nankar et al ^[1]	To evaluate & compare the	Combiflam can be	Augmentin, Valparin,

-		cariogonia and arosiva potential	regarded as highest	combiflam visuporal
		canogenic and crosive potential	regarded as ingliest	comoniani, visynerai.
		of 5 commonly prescribed PLM	carlogenic and erosive	oroter
			potential compared to the	
			rest of PLM	
2014	Scatena et	To evaluate the erosive effect of	Erosion of deciduous teeth	Guaifenesin, ferrous
	al ^[10]	pediatric medicine on deciduous	is dependant on type of	sulphate, salbutamol
		tooth enamel	medicine and exposure	sulfate
			time	
2014	Tupali A R et	To evaluate the erosive potential	All the PLM used in study	Paracetamol, ibuprofen,
	al ^[11]	of commonly used PLM	showed an erosive effect	amoxicillin,
			on primary enamel surface	erythromycin,
				phenobarbitone,
				multivitamins,
				diphenhydramine,
				benylin
2015	Saeed et al ^[12]	To evaluate cariogenic and	PLA have pH values	Paracetamol, Ibuprofen,
		erosive potential of pediatric	below critical value and	paracetamol + ibuprofen
		liquid analgesics	high sugar content all of	
			which increase the	
			cariogenic and erosive	
			potential	
2015	Kiran et al ^[13]	To evaluate erosive potential of	Medicated syrup with low	crocin, ibugesic, ondem,
		medicated syrup on primary teeth	pH and high viscocity	asthalin, ascoril-D,
			shows greater dissolution	valparin, Becousles,
			of enamel	MOX
2015	Lussi et al ^[14]	To evaluate the erosive effect of	Drinks, medicaments	Dafalgan, mucosolvan.
		dietary substances and	consumed by children can	fluimacil. tossamin
		medications on deciduous teeth	cause erosion of	ventolin clatriline
		incurcations on acciduous teen	deciduous teeth	ventonni, enumne
2016	Kulkarni at	To avaluate the offect of DI M or	DI M produces	Forium VT Crosin
2010	al ^[15]	nrimary anamal surface	significant and analysi	Wikoryl (Ambrolita D)
	al	primary enamer surface	significant and gradual	wikoryi (Antoronte D)
			ioss of surface	
			microhardness	
2016	Valinoti C A	To analyse whether pediatric	Many antibiotics	Amoxil 125,
	et al^{10}	antibiotoic formula potential risk	presented high	250,500,200,400,

- - -

		for dental caries & erosion?	concentration of sugar and	Apicilina 250 Bactrim
			pH below critical pH so	240 cefamox zintamax
			they can be considered as	
			risk factor for caries and	
			arosion	
2016	Cabor et al ^[17]	to maluate the effect of one con	The anti histomine summ	Andihistoning growing
2016	Gaber et al	to evaluate the effect of cpp-acp	i ne anti nistamine syrup	Antinistamine syrup
		on the surface microhardness of	causes erosion which was	
		primary tooth enamel eroded by	reduced after treatment	
		antihistamine syrup	with cpp-acp paste and	
			showed an increase in	
			surface microhardness	
2016	Sowmya K et	To evaluate the erosive and	Most PLA tested had pH	Paracetamol, Ibuprofen,
	al ^[18]	cariogenic potential of pediatric	values below the critical	Combiflam, Mefenemic
		liquid analgesics	value, high viscosity and	acid
			high total sugar content all	
			of which accentuate the	
			medicines cariogenic	
			and erosive potential	
2017	Mittal et al ^[2]	To evaluate the surface changes	PLM frequently used have	Paracetamol,
		on primary tooth enamel by	erosive effect on enamel	multivitamin, ibuprofen,
		commonly used PLM using SEM	of deciduous teeth with	amoxicillin,
			pH below 7	azithtromycin,
				benzoylmetronidazole.
				Multivitamin,
				promethazine, sinarest
2017	Vidhi shah et	Comparitive evaluation of four	All 4 syrups are acidic in	Benadryl, stodal(
	al ^[19]	most commonly used PLM	nature, and highest	homeopathic), Adusol
			calcium dissolution seen	(unani), saduri
			in SADURI medicine	(Ayurvedic)
2018	Deepthi M et	To analyse the cariogenic and	Most of the antiepileptic	Phenytoin, sodium
	al ^[20]	erosive potential of pediatric anti	PLM showed cariogenic	valproate,
		epileptic liquid medicament	and erosive potential	carbamazepine, levipil,
			-	phenobarbitone
2018	Elham et al ^[21]	To valuate erosive and cariogenic	Most PLM are acidic in	- Paracetamol, ibuprofen.

		potential of vajous PLM on	nature and the sugar	amoxicillin, amoxicillin
		primary tooth enamel	content & Ca dissolution	+ clyulanate notassium
			content & Ca dissolution	r ervulanate potassium,
			ability of PLM can	multivitamin,
			significantly influence	guaiphenesin
			erosion in primary tooth	
			enamel	
2019	Yun gyeong	To evaluate the effect of	The erosive potential of	Tylenol suspension,
	et al[^{22]}	commercial dry syrup on tooth	dry syrup on tooth surface	Theraflu dry syrup,
		surface	is present	modcoflu
2019	Nangalia et	Aim to evaluate effect of liquid	PLM have acidic pH and	Analgesics, antihistamine
	al ^[23]	medicinal syrup on primary	erosive potential	
		enamel of paediatric patients		
2020	Thejeswar et	To evaluate the sugar content in	A high sucrose (80%)	Paracetamol (5 types),
	al ^[24]	various brands of paracetamol	content is present in the	pacinol, p-250, pyregesic
		syrup	syrup	ds, dolopar, paracip
2020	Siddiq H et	To evaluate the sugar content and	Pediatric liquid oral	Azithromycin,
	al ^[25]	erosive potential of commonly	medications shows the	paracetamol, ibuprofen,
		prescribed liquid oral medications	presence of sugar, low	amoxicillin, amoxcv,
			endogenous pH, high	cefixime, cetrizeine,
			titrable acidity, and high	salbutamol, phenytoin,
			total soluble solids	prednisolone

Table 2: Overview of studies related to cariogenic potential of pediatric medicament

Year	Author	Aim of the study	conclusion	Medicament used
2010	Izabel et al ⁷	To evaluate the erosive and	Antihistaminic medicine	Dexamethasone,
		cariogenic potential of	have high sugar content	Loratadine, agasten,
		antihistaminic medicine	and has erosive and	cetirtec,
			cariogenic potential	dexchlorphenarmine
				maleate
2013	Xavier et al ⁹	To evaluate the erosive and	Drug showed	Analgesics, antibacterials,
		cariogenicity potential of	physiochemical	anti convulsants,
		pediatric drugs: study of	characteristics indicative	antiemetic,
		physiochemical parameters	of a cariogenic and erosive	antihistamines,
			potential on dental tissues	antiparasites, antitussives,
				corticosteroids
2014	Nankar et al ¹	To evaluate & compare the	Combiflam can be	Augmentin, Valparin,

		conic conditions in a contraction	manufad on high-of	a sur hiflant suissur and
		carlogenic and erosive potential	regarded as nignest	combillam, visyneral.
		of 5 commonly prescribed PLM	cariogenic and erosive	orofer
			potential compared to the	
			rest of PLM	
2015	Saeed et al ¹²	To evaluate cariogenic and	PLA have pH values	Paracetamol, Ibuprofen,
		erosive potential of pediatric	below critical value and	paracetamol + ibuprofen
		liquid analgesics	high sugar content all of	
			which increase the	
			cariogenic and erosive	
			potential	
2016	Valinoti C A	To analyse whether pediatric	Many antibiotics presented	Amoxil 125,
	et al ¹⁶	antibiotoic formula potential risk	high concentration of	250,500,200,400,
		for dental caries & erosion?	sugar and pH below	Apicilina 250, Bactrim
			critical pH so they can be	240, cefamox, zintamax
			considered as risk factor	
			for caries and erosion	
2016	Sowmya K et	To evaluate the erosive and	Most PLA tested had pH	Paracetamol, Ibuprofen,
	al^{18}	cariogenic potential of pediatric	values below the critical	Combiflam, Mefenemic
		liquid analgesics	value, high viscosity and	acid
			high total sugar content all	
			of which accentuate the	
			medicines cariogenic	
			and erosive potential	
2018	Deepthi M et	To analyse the cariogenic and	Most of the antiepileptic	Phenytoin, sodium
	al ¹⁹	erosive potential of pediatric anti	PLM showed cariogenic	valproate, carbamazepine,
		epileptic liquid medicament	and erosive potential	levipil, phenobarbitone
2018	Elham et al ²⁰	To evaluate erosive and	Most PLM are acidic in	Phenytoin, sodium
		cariogenic potential of vaious	nature and the sugar	valproate, carbamazepine,
		PLM on primary tooth enamel	content & Ca dissolution	levipil, phenobarbitone
			ability of PLM can	
			significantly influence	
			erosion in primary tooth	
			enamel	

 $_{\text{Page}}138$

Figure 1: Illustrative summary of search and review process

