

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume - 4, Issue - 4, August - 2021, Page No. : 190 - 201

Nasal Changes Post Presurgical Nasoalveolar Moulding: A Systematic Review

¹Nishant Das, PG, Department of Prosthodontics, MGM's Dental College and Hospital, Navi Mumbai, India

²Himanshi Jindal, Intern, MGM's Dental College and Hospital, Navi Mumbai, India

²Ruchi Gupta, Intern, MGM's Dental College and Hospital, Navi Mumbai, India

³Amol Mhatre, Asst. Professor, Department of Oral and Maxillofacial Orthodontics and Dentofacial Orthopedics, MGM's Dental College and Hospital, Navi Mumbai, India

²Abhijeet Tribhuvan, Intern, MGM's Dental College and Hospital, Navi Mumbai, India

²Maiqlin Fernandes, Intern, MGM's Dental College and Hospital, Navi Mumbai, India

Corresponding Author: Dr Amol Mhatre, Asst. Professor, Department of Oral and Maxillofacial Orthodontics and Dentofacial Orthopedics, MGM's Dental College and Hospital. Himanshi Jindal, Intern, MGM's Dental College and Hospital, Navi Mumbai, India

Citation of this Article: Nishant Das, Himanshi Jindal, Ruchi Gupta, Amol Mhatre, Abhijeet Tribhuvan, Maiqlin Fernandes, "Nasal Changes Post Presurgical Nasoalveolar Moulding: A Systematic Review", IJDSIR- August - 2021, Vol. – 4, Issue - 4, P. No. 190 – 201.

Copyright: © 2021, Nishant Das, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License. Which allows others to remix, tweak, and build upon the work non commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

Objective: The objective of this study is to review articles, which have comprehensively studied changes in nasal morphology and function in patients with unilateral cleft lip and palate defects, after undergoing Pre-surgical Naso-alveolar (NAM) moulding therapy.

Methods: A retrospective systematic review was conducted on twelve study articles. Inclusion criteria comprised of unilateral cleft lip and palate, pre-surgical nasoalveolar moulding, changes in nasal morphology and function. Exclusion criteria included age more than 4 months, patients having undergone surgical treatment, bilateral cleft lip and palate. The articles were reviewed using odds ratio.

Results: Parameters included in the study were changes in the nasal height and nasal width; changes in nostril height; changes in alar base width on cleft side; columella displacement, length and deviation. As deduced from the articles under review, patients having undergone NAM along with surgical treatment had significantly better nasal morphology as compared to patients having undergone surgical therapy alone.

Conclusion: The use of NAM can significantly improve nasal morphology at the time of nasal maturity as compared to individuals with no-NAM.

Keywords: Nasal morphology, Presurgical nasoalveolar moulding, Unilateral cleft lip, Unilateral cleft palate.

Introduction

Cleft lip and palate is one of the most common congenital craniofacial disorders estimated to 24.5 million births per year in the Indian subcontinent alone, along with the birth prevalence of clefts between 27 to 33 thousand per year, with higher prevalence in males over females as it is a sex linked recessive disorder.^[1] It is caused by embryological defects (failure of fusion of frontonasal processes with the maxillary component of the first brachial arch) encountered at the process of the formation and development of the facial structures between the fourth and eighth weeks of embryological development. Deficiency and disharmony of the mid face due to cleft lip, alveolus and palate deformity is observed in all 3 planes of space^[2]. The increased use of transabdominal ultrasound (3D) during the second trimester leads to an increased frequency of oral clefts being diagnosed antenatally. Important techniques such as the 3D-reverse view, reverse face view and flipped face view technique and improved ultrasonography equipment and probes aid in better visualization and diagnosis of the defect.^[3]

Unilateral cleft lip is associated with typical deformities like rotation and distortion of the vermillion border with loss of cupids bow and philtral landmarks on the cleft side caused by asymmetric forces on the premaxilla during facial growth. Orbicularis Oris muscle fibers, that may be continuous across Simonart's band in milder forms, are oriented asymmetrically along the cleft margins.^[4]

The lower lateral nasal cartilage is depressed and concave resulting in depression and displacement of the nasal tip as well as overhanging of the nasal apex. The columella and nasal septum are inclined towards the cleft with base deviated towards the non-cleft side.^[5] Restoration of normal form and function post operatively with little to no tendency of relapse dictates a need for therapy that provides rehabilitation of form as well as esthetics.

Presurgical orthopedics started with McNeil's studies followed by Matson, Matsua and Hirose who placed a silicone stent inside the nostril. The PNAM protocol was suggested by Grayson et al. (1993), Brecht et al. (1995), Grayson and Santiago (1997), Cutting et al. (1998). The treatment modality includes active moulding and repositioning of the deformed nasal cartilages and alveolar processes as well as lengthening of the deficient columella.^[5] The technique includes an impression. obtained using an elastomeric impression material in an infant acrylic impression tray, followed by fabrication of an acrylic plate secured to the palate and maxillary process and taping of the cleft lip segments for alignment of the nasal base. Nasal stents may be added to the moulding plate once alveolar cleft width has reduced to 6mm.^[5] Parameters like alar cartilage morphology, bilateral symmetry can be achieved without additional soft tissue surgery or scarring.^[6]

Newer techniques like Figueroa's NAM included simultaneous alveolar moulding and nasal moulding using an acrylic plate with rigid acrylic, nasal extension along with rubber bands and a soft resin ball attached to the acrylic plate. A modified version of the traditional Figueroa NAM states that the acquired maternal estrogen before birth results in a decrease in elasticity and increase in plasticity of cartilages. It has also been assessed by Matsua et al. that the temporary plasticity of nasal cartilage is believed to be caused by high levels of hyaluronic acid.^[7] Different electronic databases (PubMed and Google scholar)

The main objective of this study is to evaluate the outcome of Presurgical Nasoalveolar Moulding Therapy,

as effective on nasal morphology and esthetics, in infants diagnosed with unilateral cleft lip and cleft palate (CLCP).

Method and Methodology

This systematic review was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).^[8] MEDLINE and Google search were searched from 1999 to 2021 for articles. Search included keywords and subject headings pertaining to cleft lip and/or palate and Presurgical Naso-Alveolar Moulding and infants. An example of the search strategy and concepts as applied to PubMed/MEDLINE is available in Fig. 1.

A) Selection Criteria

All resulting articles were compiled, and duplicate titles were removed. Two independent reviewers screened the remaining titles and abstracts in PubMed indexed journals and PubMed Central using predetermined eligibility criteria, which included all clinical papers on NAM and all cleft types and infants of age 0-4 months for full text review. Final inclusion criteria were unilateral cleft lip and palate, presurgical nasoalveolar moulding, and changes in nasal morphology. Exclusion criteria were non-English articles, abstracts, presentations, case reports, review articles, correspondences, editorials and duplicates, languages other than English, and not NAM articles. Cleft

Table 1

surgery studies not in the context of NAM or exploring infant orthopedics other than NAM, and those studies only referring to surgical outcomes were also excluded Fig. 1 shows the PRISMA flow diagram with tallied reasons for study exclusion.

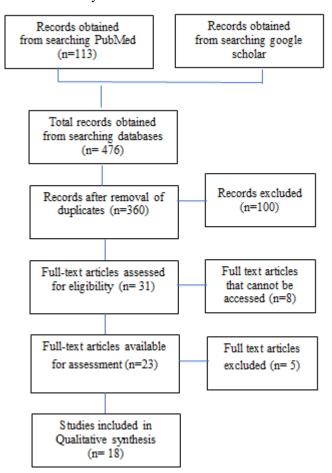


Fig. 1: PRISMA flow diagram with tallied reasons for study exclusion

Sn.	Study	Design	No. of	Age starting for	Patient	Duration of	Nasal height	Columella	Outcome measure
			patients	NAM	intervention	treatment	and width	displacement,	
								length and	
								deviation	
1.	Maull	Retrospe	10 patients	4 years 6 months	Orthopaedic	Treatment	Significant	Improvement	Presurgical NAM
	in	ctive	presurgical	for NAM and 9	treatment till	done at 4	improvement in	in columella	significantly increases the
	1999 ^[10]	study	nasal	years 1 month for	4 months of	months of	nasal symmetry	deviation	symmetry of the nose.
			moulding	control group	age	the age,			Depressed dome, wide alar
			in			follow up			width, deficient columella,
			conjunction			done at 4			and deviation of nasal
			with			years 6			septum was greatly
			alveolar			months for			reduced

			moulding			PNAM			
			and 10			group and 9			
			patients			years 1			
			only pre			month for			
			surgical			control			
			alveolar			group			
			moulding			8 11			
2.	Pai et	Prospect	Fifty-seven	New born patients	Presurgical	1 year	Infants with	There was	Infants with presurgic
2.	al. in	ive study	new born	0 years	NAM before	i yeai	presurgical	some relapse	naso-alveolar mouldir
	$2005^{[16]}$	Ive study		0 years			naso-alveolar	of nostril	improved symmetry
	2005		· ·		primary lip				
			and 20		repair around		moulding	shape in	of the nose in width, heig
			girls)		3 to 4 months		improved	width (10%),	and columella angle,
					of age		symmetry	Height (20%),	compared to their
							of the nose in	and angle of	presurgical status.
							width, height	columella	
								(4.7%) at 1	
								year of age.	
3.	Singh	Prospect	10	28 days	All subjects	140 days	Relative size	Relative size	NAM significant
	et al. in	ive			underwent		increases were	increases	increased the nas
	2005 ^[30]	longitudi			naso-alveolar		found on the	were found	symmetry. However slig
		nal study			moulding till		noncleft side,	on the	overcorrection of the al
					4 months of		involving the	noncleft side	dome on the cleft side w
					age		upper nose	columella	recommended to mainta
							(30%), alar	height (30%),	the NAM results
							depth	On the cleft	
							(20%), alar	side, the	
							dome (30%),	following	
							and lateral wall	showed a size	
							of the nostril	increase:	
							(17%). On the	columella	
							cleft side, the	height (30%)	
								neight (30%)	
							following showed a size		
							increase: upper		
							nose (8%),		
							alar dome (5%)		
							and lateral wall		
							of the nostril		
							(30%)		
4.	Spengl	Prospect	8	34 days	PNAM	212.5 days	Significant	Increase in	Significant reduction in the
	er et al.	ive study			appliance		increase in the	the bi-alar	width of the larger cle
	in 2005	with			followed by		bi-alar width	width and	was also observed.
	[18]	blinded			intraoral		and	columellar	
		measure			moulding		in the	length and	
		ment			plate with		columellar	width.	
					nasal stent		length and	Improvement	
							width	in columellar	
								deviation was	

.

. .

								observed,	
								reduction in	
								the	
								premaxillary	
								protrusion	
								and deviation.	
5.	Baek et	Prospect	16 UCLP	37 days	PNAM	13 weeks	Not evaluated	Not evaluated	Alveolar moulding effect
	al in	ive study	infants		appliances				took place mainly in the
	2006				and rotation-				anterior alveolar segmen
	[21]				advancement				and growth took plac
					cheiloplasty				mainly in posterio
									alveolar segment and
									palatal segment
	Bongaa	Prospect	54	2 weeks	Infant	52 weeks	Not evaluated	Not evaluated	Infant orthopedics does no
6.	rts et	ive two-	51	2 WOORS	orthopedics	52 WOOKS	110t evaluated	The evaluated	have any influence on th
0.									-
	al. in	arm			performed				maxillary arch dimensions
	2006	randomi			with passive				
	[31]	zed			plate which				
		controlle			were adjusted				
		d clinical			every 3weeks.				
		trial			The appliance				
					was				
					continued till				
					the soft palate				
					surgery				
7.	Ezzat	Prospect	Twelve	26 days	The PNAM	110 days	Increase in cleft	Increase in	Decrease in both
	et al. in	ive study	patients		appliance		nostril height,	columella	intersegment alveolar clef
	2007 ^[13]	ive study	with UCLP		upphunee		maxillary	width	distance and columella
	2007		with OCLI				width	width	deviation
0	G: 1	T ¹	751 1	4. 07. 1	G 6 11	41 1			
8.	Singh	Finite	The sample	At age 37 weeks	Successfully	41 weeks	Reductions in	Not evaluated	Following surgical repai
	in 2007	element	comprised		completed a		facial surface		of UCLP in patient
	[14]	studies	15 patients		course of		area were		previously treated with
			with left		NAM (4). At		found in the		NAM, 3D facia
			UCLP and		a mean age of		UCLP group,		morphology was virtuall
			10 matched		37 weeks, all		involving the		indistinguishable from th
			control		infants		columella		non-cleft mean
			subjects		underwent lip		(29%),		
					repair and		labial tubercle		
					primary		(51%), lower lip		
					rhinoplasty		(29%) and		
					by the		lateral aspects		
							of the face		
					same surgeon				
					(MY).		(19%).		
							However, the		
							UCLP group		
				1	1		also showed		
							increases in size		

.

.

. .

							the nose (25%)		
							and		
							laterally to the		
							columella		
							directly below		
							the nares (29%).		
9.	Barilla	Retrospe	25	3-4 months	Fifteen	Mean age	Nasal symmetry	Not	Lower lateral and septal
	s in	ctive			patients	of	demonstrated a	mentioned	cartilages
	2009	review			were treated	9 years	greater degree		are more symmetric in the
	[22]				with	(range, 7 to	of cleft-side and		nasoalveolar moulding
					presurgical	11 years)	non-		patients compared with the
					nasoalveolar		cleft-side		surgery-alone patients.
					moulding for		equality in the		Improved symmetry
					3 months		nasoalveolar		observed in nasoalveolar
					before		moulding		moulding-treated noses
					surgical		with surgery		during the time of the
					correction,		treated patients		primary surgery is
					and 10		compared with		maintained at 9 years of
					patients were		the		age
					treated by		patients treated		
					surgical		with surgery		
					correction		alone		
					alone.				
					The average				
					age at the				
					time of				
					follow-up				
					was 9 years.				
10.	Hsieh	Retrospe	62	3months	PNAM	3-6 months	Not evaluated	Not evaluated	In unilateral cleft lip and
	et al. in	ctive			therapy was				palate patients, the sagittal
	2010 ^[26]	study			followed by				growth of the maxilla
					Gingivo-				would be affected more
					perioplasty				adversely in the group
									treated with gingiva-
									perioplasty
11.	Isogaw	Prospect	15.	Infants	Modified	6weeks	Not evaluated	Not evaluated	The PNAM group is
	a N,	ive			Hotz's plate,				smaller on the lateral
	Ochiai	Study			nasal stent,				deviation of the incisal
	S, Mito				modified				point than the modified
	Т,				PNAM				Hotz's group. The
	Kindai				appliance				decreased average width of
	chi J,								the palatal
	Ishibas								cleft and curvature of the
	hi N,								palate, was almost the
	Takagi								same in both the modified
	Y,								Hotz's and PNAM groups.
	Ishika								In comparison with the
	wa M.	1			1				modified Hotz's plate, the

....

					• • • • • • • • • • •				
	in								modified PNAM appliance
	2010 ^[28]								also improves the
									moulding
									of the alveolar segments
									and reduces cleft width.
12.	Simanc	Pilot	5 infants	Aged 0 to 3	Presurgical	10 weeks	Decrease	Increase in	Increase in columellar
	a in	study		months	NAM and		of the nostril	columellar	length on the cleft side and
	2011				taping		floor on the	length on the	decrease
	[33]						noncleft side	cleft side	of the nostril floor on the
							were observed		noncleft side were
							in all subjects		observed in all subjects.
									Progressive changes were
									observed most significant.
13.	Clark	Prospect	25	0.8 months (range,	PNAM and	6 years	40% of the	Not evaluated	The improvement in the
	SL,	ive		0.5-1.2 months	non PNAM		patients in the		PNAM group was most
	Teichg	Study		the median length			PNAM group		evident in nasal and lip
	raeber			of the therapy was			achieved normal		anatomy.
	JF,			3.6 months (range,			nasal		
	Fleshm			2.3-4.9 months),			morphology,		
	an RG,			and the median			whereas this		
	Shaw			time for surgery			was achieved		
	JD,			was 5.5 months			only in 20% of		
	Chavar			(range, 2.8–6.2			the non-PNAM		
	ria C,			months). The			group. Normal		
	Kau			follow-up time			alar width and		
	CH,			was 5.1 years			nasal projection		
	Gateno			(range, 2.6–10.0			were seen in		
	J, Xia			years). For the			60% and 65%		
	JJ.in			non-PNAM			of the PNAM		
	2011			group, the median			group but only		
	[34]			time for the			in 20% and		
				surgery was 5.0			40% of the non-		
				months (range,			PNAM group		
				2.6–6.4 months).					
				The follow-up					
				time was 6.0 years					
				(range, 4.9–7.6					
				years).					
				<i>y cmsy.</i>					

Results

•

Study Characteristics: The database search results identified 476 articles. After removing duplicates, 360 unique abstracts remained for title and abstract screening for relevance. The screening procedure excluded 100 articles, leaving 260 articles for full text screening. Following this full text review, 242 additional articles were excluded, 18 studies were included for qualitative

analysis in this 6 were retrospective and 10 were prospective studies 1 was a finite element study and 1 was a pilot study.

Discussion

PNAM is a non-surgical method to minimize the severity of the cleft deformity by reshaping the cleft lip, alveolus, palate and the nose, before primary cheiloplasty and palatoplasty surgeries. In this context, a valuable asset in

Q

the management of unilateral CLCP is proven to be PNAM.^{[9].} The main objectives of PNAM appliances are improving nasal symmetry and lip esthetics while elongating the columella and correcting the nasal cartilage (Grayson et al, 1999^[10]; Grayson et al, 2001^[11]; Liou et al, 2004^[12]; Ezzat et al, 2007^[13]; Singh et al., 2007^[14]; Lee et al., 2008^[15]). Unless coordinated with adequately timed, conservative and gentle surgery, it is known that Presurgical Infant Orthopedics (PSIO) treatment will not be efficient in the long run.

Effects of Traditional Presurgical Infant Orthopedics (PSIO) within different surgical techniques are not easy to differentiate, whether there are positive or negative results, due to the PSIO or to the surgical technique itself. ^[16]

The concept of NAM works on Matsuo's principle^[17]; that the nasal cartilage could be moulded due to increased plasticity concurrent to increased levels of maternal estrogen and hyaluronic acid, if treatment is initiated within the first 6 weeks of life. Presurgical nasoalveolar moulding (PNAM) appliances have been in use as a new approach to Traditional Presurgical Infant Orthopedics (TPSIO). The alveolar ridge and nasal cartilage are moulded concurrently using the NAM appliance, which consists of an intraoral moulding plate with nasal stents. ^[10, 18]

Advocates of the PNAM technique have stated that, besides other advantages of traditional plates, the main objectives of PNAM appliances are improving nasal symmetry and lip esthetics while elongating the columella and correcting nasal cartilage deformity. ^[16,11] Alternatively, all types of (PSIO) approaches are complex and expensive, as stated by opponents, and might have an adverse effect on maxillary growth. None of these claims are evidence based. ^[13,14]

A) Long term effects

In a 6-year follow-up by Bennun et al.^[19] to compare growth and cosmetic results of 97 UCLP patients using plaster models by using surface impressions of the babies revealed a much better and permanent nostril symmetry, no alar cartilage luxation and increase in the columellar length in patient with nasal component.^[19] It was concluded that there were no positive effects on factors like maxillary arch dimension, facial growth or occlusion, until the age of 6 years, when use of passive Infant Orthopaedic (IO) appliances were included in the treatment. However, it was stated that the review yielded a result that nasal symmetry was improved with NAM after a distinction was made between PSIO and NAM appliances by the authors ^[20].

Nasal splints helped maintain the alar cartilage height and prevent collapse during scar healing post-surgery. The nasal, facial anatomy and texture corresponding to ethnic descent, could be an important factor for remodelling a nose in the desired shape accordingly.^[21,22]

B) Effect on feeding

Masarei et al. (2007) ^[23] noted consistency in patients evaluated for isolated cleft, besides UCLP. There was no positive effect on feeding or consequent nutritional status, from the use of PSIO with passive and active appliances, in patients with UCLP based on the results of the two RCTs (Prahl et al., 2005; Masarei et al., 2007) ^[23,24]

C) Language

Early positive effects of PSIO change over time, and no notable differences were found in language development between the two groups at the age of 6 years.^[17]

D) Facial Growth, Maxillary Arch and Occlusion

The centers that practice PSIO did not show demonstrable advantages in terms of the facial growth and the occlusion in patients with UCLP treated with different types of PSIO appliances (Ross, 1987; Mars et al., 1992; Mølsted et al., 1992; Brattstrom et al., 2005; Mølsted et al., 2005).^[20,25,26,27]

E) Nasal Symmetry and Nasolabial Appearance

It is suggested that the main differences of NAM from TPSIO is the reshaping of the nasal cartilage and providing esthetic benefits in terms of nasal tip and alar symmetry (Grayson et al., 1999; Maull et al., 1999; Grayson et al., 2001; Suri and Tompson, 2004; Singh et al., 2005). ^[8,9,28,29,30]. Bongaarts et al. (2008) ^[31] assessed patients with UCLP at ages 4 and 6 years. At 4 years of age, the full-face pictures of (IO+) children were scored to be more attractive than those of (IO-) children; however, at the age of 6 years, a positive effect of IO was seen by professionals on the nasolabial photographs. The difference in evaluation within the 2-year period also shows the importance and the necessity of long-term assessment on facial esthetics in particular treatment outcomes.

F) Complications of Presurgical Naso alveolar Moulding

Presurgical naso-alveolar moulding is most effective with full time wear. However, full time wear can be associated with certain complications like ulceration, tissue irritation leading to inflammation, fungal infections and bleeding. Soft tissue ulcerations can be due to excessive activation or due to the pressure from the moulding plate. After selective trimming of the moulding plate, the ulcerations are noticed to heal overtime. Improper maintenance of the hygiene with full time wear of the moulding plate can also result in residual fungal infections. This can be treated by tropical Nystatin or Amphotericin. However, the Nasoalveolar moulding therapy should continue during the selected treatment phase. Another common complaint with naso-alveolar moulding is a rash like area of erythema and chafing on the zygomatic process areas due to extra-oral taping. These are generally self-limiting. The best way to prevent these rashes is to wet the tape thoroughly before removal or by the application of a medical dressing under the tape and the skin.^[32]

Mega nostril may result due to excessive pressure on the nasal cartilage which occurs due to improper stent positioning or nasal over contouring resulting in excessive increase in the circumference of the nostril. Controversies exist stating compensation of relapse by overcorrection. One group suggests slight orthopaedic over correction of the alar dome (Singh et al; 2005)^[27] while the other group suggested vertical surgical nasal overcorrection (Liou E et al; 2004)^[10]. However, external bruising or petechiae maybe seen clinically in the area of insult causing reason for avoidance for application of over activation.

Hard tissues complications associated with NAM include excessive rotation of the lesser segment to meet the greater segment in a perpendicular manner, resulting in an asymmetric 'T' shaped configuration. Hence proper care should be taken to modify and monitor the segmental movement with 7-day follow-up. Eruption of teeth mid treatment is another hard tissue complication which could arise by the moulding appliance due to the pressure exerted on the gingival tissues. The appliance may be modified for favourable eruption of teeth. Moreover, a comparison of every single aspect of treatment seems impossible as a unique combination of population and treatment duration was used in each study.

In addition, this systematic review has not taken into account the different techniques of PSIO, timings of surgery and surgical techniques; which would have made comparison of the results even more difficult. All these aspects together have made conclusions of the results of the studies by means of the intended systematic review impossible^[20]

Conclusion

Though surgical procedures have been the key element in cleft lip and palate rehabilitation, the NAM techniques aid and have made the rehabilitation much more reliable and physiologically appropriate. The use of NAM techniques by selectively controlling the growth patterns utilizes the malleability of para oral structures at an early age. Better esthetics and reliable long term results are observed as approaches of moulding the nasal cartilage, alveolar ridges and premaxilla (in the neonatal period) adjuncts the surgical procedures. Based on the review, better long term results with more benefits and efficacy are seen with nasal moulding. However, the effect of alveolar moulding needs to be studied further to assess the same. More favourable results were obtained when gingivo- periosteoplasty was performed along with primary lip repair. Therefore, in conclusion not only thorough knowledge of the changing concepts of the NAM technique but also interdisciplinary approach and timing of the initiation of NAM is considered essential for successful and early rehabilitation of CLCP.^[32]

References

- 1. A R Rushton.Sex-linked inheritance of cleft palate.1979 Apr 27;48(2):179-81
- Defne Kecik, Ayhan Enacar. Effects of naso-alveolar moulding therapy on nasal and alveolar morphology in unilateral cleft lip and palate.2009 Nov;20(6):2075-80
- Bram Smarius, Charlotte Loozen, Wendy Manten, Mireille Bekker, Lou Pistorius, Crostiaan Breugem. Accurate diagnosis of prenatal cleft lip/palate by

understanding the embryology. 2017 Sep 26; 7(3): 93–100.

- Mahdi A. Shkoukani, Michael Chen, Angela Vong. Cleft Lip – A Comprehensive Review. 2013; 1: 53.
- Barry H. Grayson, Pedro E. Santiago, Lawrence E. Brecht, Court B.Cutting. Presurgical Moulding in infants with cleft lip and palate. 1999 Nov;36(6):486-98.
- Dinesh Chander Choudhary, Rohit Sharma, Vineet Sharma, Simrat Kaur. Presurgical naso-alveolar moulding: A boon in the management of cleft lip and palate. 2016 Dec; 72(Suppl 1): S164–S168.
- 7. Abin Mathew,Sunil Muddaiah,Jayanth
 B.,Subrahmanya,Sanju Somaiah,Balakrishna
 Shetty,Goutham Reddy. Presurgical Naso-alveolar
 Moulding in a 4-day-old Infant with Unilateral Cleft
 Lip, Alveolus, and Palate Deformity. 2018
 december:8(4):225
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
- Zuhaib M, Bonanthaya K, Parmar R, Shetty PN, Sharma P. Presurgical naso-alveolar moulding in unilateral cleft lip and palate. Indian J Plast Surg. 2016 Jan 1;49(1):42–52.
- Maull DJ, Grayson BH, Cutting CB, Brecht LL, Bookstein FL, Khorrambadi D, et al. Long-Term Effects of Nasoalveolar Moulding on Three-Dimensional Nasal Shape in Unilateral Clefts. Cleft Palate-Craniofacial J. 1999 Sep;36(5):391–7.
- 11. Grayson BH, Cutting CB. Presurgical nasoalveolar orthopedic moulding in primary correction of the nose, lip, and alveolus of infants born with unilateral

and bilateral clefts. Cleft Palate Craniofac J 2001;38:193-8

- Eric Jein-Wein Liou, Murukesan Subramanian, Phil K T Chen, C Shing Huan. The progressive changes of nasal symmetry and growth after nasoalveolar moulding: a three-year follow-up study. 2004 Sep 15;114(4):858-64.
- Ezzat CF, Chavarria C, Teichgraeber JF, Chen JW, Stratmann RG, Gateno J, et al. Presurgical nasoalveolar moulding therapy for the treatment of unilateral cleft lip and palate: A preliminary study. Cleft Palate-Craniofacial J. 2007 Jan;44(1):8–12.
- Singh GD, Levy-Bercowski D, Yáñez MA, Santiago PE. Three-dimensional facial morphology following surgical repair of unilateral cleft lip and palate in patients after nasoalveolar moulding. Orthod Craniofacial Res. 2007;10(3):161–6.
- Lee CTH, Garfinkle JS, Warren SM, Brecht LE, Cutting CB, Grayson BH. Nasoalveolar moulding improves appearance of children with bilateral cleft lip-cleft palate. Plast Reconstr Surg. 2008 Oct;122(4):1131–7.
- 16. Pai BCJ, Ko EWC, Huang CS, Liou EJW. Symmetry of the nose after presurgical nasoalveolar moulding in infants with unilateral cleft lip and palate: A preliminary study. Cleft Palate-Craniofacial J. 2005;42(6):658–63.
- Matsuo K, Hirose T, Otagiri T, Norose N, Matsuo K. Repair of cleft lip with nonsurgical correction of nasal deformity in the early neonatal period. Plast Reconstr Surg. 1989;83(1):25–31.
- Spengler AL, Chavarria C, Teichgraeber JF, Gateno J, Xia JJ. Presurgical Nasoalveolar Moulding Therapy for the Treatment of Bilateral Cleft Lip and Palate: A

Preliminary Study. Cleft Palate-Craniofacial J. 2006 May;43(3):321–8.

- Bennun RD, Perandones C, Sepliarsky VA, Chantiri SN, Aguirre MIU, Dogliotti PL. Nonsurgical Correction of Nasal Deformity in Unilateral Complete Cleft Lip: A 6-Year Follow-Up. Plast Reconstr Surg. 1999 Sep;104(3):616–30.
- 20. Niranjane PP, Kamble RH, Diagavane SP, Shrivastav SS, Batra P, Vasudevan SD, et al. Current status of presurgical infant orthopedic treatment for cleft lip and palate patients: A critical review. Indian J Plast Surg. 2014;47(3):293–302.
- Baek SH, Son WS. Difference in alveolar moulding effect and growth in the cleft segments: 3-dimensional analysis of unilateral cleft lip and palate patients. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2006 Aug;102(2):160–8.
- Barillas I, Dec W, Warren SM, Cutting CB, Grayson BH. Nasoalveolar moulding improves long-term nasal symmetry in complete unilateral cleft lip-cleft palate patients. Plast Reconstr Surg. 2009;123(3):1002–6.
- 23. Masarei AG, Wade A, Mars M, Sommerlad BC, Sell D. A randomized control trial investigating the effect of presurgical orthopedics on feeding in infants with cleft lip and/or palate. Cleft Palate-Craniofacial J. 2007 Mar;44(2):182–93.
- 24. Prahl C, Kuijpers-Jagtman AM, Van't Hof MA, Prahl-Andersen B. Infant orthopedics in UCLP: Effect on feeding, weight, and length: A randomized clinical trial (Dutchcleft). Cleft Palate-Craniofacial J. 2005 Mar;42(2):171–7.
- 25. Shaw WC, Dahl E, Asher-Mcdade C, Brattström V, Mars M, Mcwilliam J, et al. A Six-Center International Study of Treatment Outcome in Patients with Clefts of the Lip and Palate: Part 5. General

Discussion and Conclusions. Cleft Palate-Craniofacial J. 1992 Sep;29(5):413-8.

- 26. Hsieh CHY, Ko EWC, Chen PKT, Huang CS. The effect of gingivoperiosteoplasty on facial growth in patients with complete unilateral cleft lip and palate. Cleft Palate-Craniofacial J. 2010 Sep;47(5):439–46.
- 27. Shaw WC, Brattström V, Mølsted K, Prahl-Andersen B, Roberts CT, Semb G. The eurocleft study: Intercenter study of treatment outcome in patients with complete cleft lip and palate. Part 5: Discussion and conclusions. Vol. 42, Cleft Palate-Craniofacial Journal. Cleft Palate Craniofac J; 2005. p. 93–8.
- 28. Isogawa N, Ochiai S, Mito T, Kindaichi J, Ishibashi N, Takagi Y, et al. Three-Dimensional Comparison in Palatal Forms Between Modified Presurgical Nasoalveolar Moulding Plate and Hotz's Plate Applied to the Infants With Unilateral Cleft Lip and Palate. Singapore Dent J. 2010;31(1):36–42.
- 29. Suri S, Tompson BD. A modified muscle-activated maxillary orthopedic appliance for presurgical nasoalveolar moulding in infants with unilateral cleft lip and palate. Cleft Palate-Craniofacial J. 2004 May;41(3):225–9.
- 30. Singh GD, Levy-Bercowski D, Santiago PE. Threedimensional nasal changes following nasoalveolar moulding in patients with unilateral cleft lip and palate: Geometric morphometrics. Cleft Palate-Craniofacial J. 2005 Jul;42(4):403–9.
- 31. Bongaarts CAM, Van't Hof MA, Prahl-Andersen B, Dirks I V., Kuijpers-Jagtman AM. Infant orthopedics has no effect on maxillary arch dimensions in the deciduous dentition of children with complete unilateral cleft lip and palate (Dutchcleft). Cleft Palate-Craniofacial J. 2006 Nov;43(6):665–72.

- 32. Murthy PS, Deshmukh S, Bhagyalakshmi A, Srilatha K. Pre surgical nasoalveolar moulding: changing paradigms in early cleft lip and palate rehabilitation. J Int oral Heal JIOH. 2013;5(2):70–80.
- 33. Simanca E, Morris D, Zhao L, Reisberg D, Viana G. Measuring progressive soft tissue change with nasoalveolar moulding using a three-dimensional system. J Craniofac Surg. 2011;22(5):1622–5.
- 34. Clark SL, Teichgraeber JF, Fleshman RG, Shaw JD, Chavarria C, Kau CH, et al. Long-term treatment outcome of presurgical nasoalveolar moulding in patients with unilateral cleft lip and palate. J Craniofac Surg. 2011 Jan;22(1):333–6.
- 35. Kinouchi N, Horiuchi S, Yasue A, Kuroda Y, Kawai N, Watanabe K, et al. Effectiveness of presurgical nasoalveolar moulding therapy on unilateral cleft lip nasal deformity. Saudi Med J. 2018;39(2):169–78.
- 36. Singh A, Thakur S, Singhal P, Diwana VK, Rani A. A Comparative Evaluation of Efficacy and Efficiency of Grayson's Presurgical Nasoalveolar Moulding Technique in Patients with Complete Unilateral Cleft Lip and Palate with Those Treated with Figueroa's Modified Technique. Contemp Clin Dent. 2018 Jun 1;9 (Suppl 1):S28–33.
- 37. Thakur S, Singh A, Thakur NS, Diwana VK. Achievement in Nasal Symmetry after Cheiloplasty in Unilateral Cleft Lip and Palate Infants Treated with Presurgical Nasoalveolar Moulding. Contemp Clin Dent. 2018 Jul 1;9(3):357–60.
- 38. Thakur S, Singh A, Diwana V, Rani A, Thakur N. Dynamic changes in nasal symmetry after presurgical nasoalveolar moulding in infants with complete unilateral cleft lip and palate. African J Paediatr Surg. 2020 Jan 1;17(1–2):1–4.