

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service Available Online at: www.ijdsir.com

Volume – 3, Issue – 2, April - 2020, Page No. : 460 - 478

Value of Salivary Biomarker as a Diagnostic Tool in Oral Cancer- A Systematic Review

¹Diana Daniel, Department of Oral and Maxillofacial Surgery, The Oxford Dental College, Bangalore - 560068 ²Jerin Jose, Department of Oral and Maxillofacial Surgery, The Oxford Dental College, Bangalore - 560068 ³Santosh B S, Department of Oral and Maxillofacial Surgery, The Oxford Dental College, Bangalore - 560068 ⁴Sindhu S Rao, Department of Oral and Maxillofacial Surgery, The Oxford Dental College, Bangalore - 560068 **Corresponding author:** Sindhu S Rao, Department of Oral and Maxillofacial Surgery, The Oxford Dental College, Bangalore - 560068

Citation of this Article: Diana Daniel, Jerin Jose, Santosh B S, Sindhu S Rao, "Value of Salivary Biomarker as a Diagnostic Tool in Oral Cancer- A Systematic Review", IJDSIR- April - 2020, Vol. – 3, Issue -2, P. No. 460 – 478.

Copyright: © 2020, Sindhu S Rao, et al. This is an open access journal and article distributed under the terms of the creative commons attribution noncommercial License. Which allows others to remix, tweak, and build upon the work non commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Type of Publication: Review Article

Conflicts of Interest: Nil

Abstract

More than 90% of oral cancers are squamous cell carcinomas (OSCC). Most OSCCs are not diagnosed at an early stage even though it is easily accessible for direct visual examination. This event underscores the early and accurate detection by clinicians to reduce its morbidity and mortality rate. Anatomical proximity of the saliva to oral cancer makes it most accurate and specific diagnostic tools, while more than 100 salivary biomarkers have already been identified, including cytokines (IL-8, IL-1 β , TNF-a), P53, transferrin, DUSP, MMP, LDH, and many more. However, further research is required for validating the best salivary biomarker. Current review aimed at finding the value of salivary biomarker as a diagnostic tool in oral cancer.

Keywords: Saliva, Biomarker, Oral Cancer, Oral squamous cell carcinoma

Introduction

6th most common cancer worldwide is cancers of the oral cavity and pharynx [1]. Oral squamous cell carcinomas (OSCC) seems to be the most incessant of every single oral neoplasm, and over 90% of every oral neoplasm are evaluated to be OSCC. They arise from the epithelial lining of the oral cavity. Most OSCCs are not diagnosed until an advanced stage though it's visible under direct visual examination, which is believed to be the major reason for the low survival rate [2]. More than 550,000 cases of head and neck cancers are detected in worldwide, with an annual death rate approaching 300,000/year [3]. This underscores the significance of timely and specific discovery by clinicians. In reacting to the call for early recognition of OSCC, a few indicative clinical indicators have been produced, or right now are being developed [4-6]. Biomarkers have developed as basically vital apparatuses to recognize infections in their different clinical stages by expanding the exactness to definitely

describe the ailment in a demonstrative or prognostic level.

Saliva has been found to reflect the diseased or physiological state of the human body, and hence could be utilized for diagnostic purpose [7-9]. Salivary testing, a non-invasive alternative option to serum testing, is a methodology for finding viable and forecasting expectation of different illnesses. Proteins, mRNA, catalysts, and chemicals extracted from salivation has been found to be at adequately better levels amongst OSCC & control tests, to be considered as potential biomarkers. They could be a prospect to fill in as a generally accessible screening apparatus that is autonomous of the limitation of an injury for analysis. This technique being conceivably better than other identification techniques, enable salivary biomarker screening to sort patients with harmful and conceivably threatening injuries. Although there are an extensive number of examinations on salivary biomarkers and OSCC, a precise survey is important to figure out which of the various accumulations of detailed biomarkers displays satisfactory indicative test exactness. Subsequently, the objective of this methodical survey was to answer an engaged inquiry, in particular: "Do salivary biomarkers have the capacity to precisely distinguish Oral SCC patients from non-oral SCC controls?"

(Pubmed)Records Identified Through Data Base Searching

(N =1576)

Record Within The Duration From 2000-2018

(N =1282)

î

Record Written In English And Full Text Articles

(N=1225)

₽.

Studys That Are Done Only In Humans (Classical Clinical Study, Controlled Clinical Trial, Randomised Control Trial Multicentric Study, Observational Study, Historical Article, Pragmatic Clinical Trial, Government Publications)

(N=1093)

Salivary Biomarker Only In Oral Squamous Cell Carcinoma (N = 196)

Sensitivity And Specificity And Mean Value Obtained In Salivary Biomarker of Oral Squamous Cell Carcinoma

(N=45)

Non Maching Patient Criteria, Missing Data

(N= 34)

Figure 1: Image depicting the identification, the screening process and the eligibility criteria of those studies that were included in this review.

Results

Study selection and characteristics

The systematic review intended to test the value of salivary biomarker as a diagnostic tool in oral cancer. Our systematic search of PubMed resulted in 1576 unique papers. Articles that were recorded from the duration of 2000-2018 was around 1282. Articles that are written in English and full- text article were 1225. Those articles which were related only to humans and those that followed these study design including (classical clinical study, controlled clinical trial, randomised control trial multicentre study, observational study, historical article, pragmatic clinical trial, government publications) were 1093. Out of these 1093 articles, salivary biomarker in

OSCC was around 196. In this, about 45 articles had either sensitivity and specificity or mean values. 11 were excluded due to missing data. Hence, 34 articles were included in the systematic review [Figure1].

Individual characteristics of the included 34 studies are summarised in [Table 1]. Of 34 full texts assessed, the first observation was that not all studies presented with the sensitivity and specificity values. Only sixteen studies showed the sensitivity and specificity values [Table 2]. Majority of these studies were conducted in Asian Countries (INDIA, CHINA) and US (California). Most of the studies utilized quantitative polymerase chain reaction (qPCR) technique. Seven studies used ELISA as the detection method. The sample size of these studies ranged from 19 to 191.

Sensitivity and specificity

MASPIN, CYCD1 showed 100% sensitivity and specificity with ELISA as the detection method. Followed by MMP1 with sensitivity and specificity of 93.5% and 97.8% respectively, when detected by the RT-qPCR method. DUSP1 showed least sensitivity of 0.14 using PCR AND ELISA. Lactate dehydrogenase showed least specificity values when detected by ELISA, Kinetic spectrophotometry. Table 1: Shows the Individual characteristics of the included 34 studies

Sl No	Year	Lead Authour	Study Design	Country	No Of Case	No Of Control	Salivary Biomarker	Detection Method	Sensitivity	Specificity	Mean Value Obtained
1	2004	Yang Li	A clinical study	US	Patients with primary T1/T2 OSCC(n=32)	Control =32 Healthy subjects	DUSP1, H3F3A,IL1B,IL8,OA Z1,S100P, SAT	RiboAmp RNA Amplification kit,Human Genome,Quantitativ e Polymerase Chain Reaction	DUSP1=59,H3F3A=53,I L1B=63,IL8=88,OAZ1= 100,S100P=72, SAT=81	DUSP1=75,H3F3A =81,IL1B=72,IL8=8 1,OAZ1=38,S100P= 63,SAT=56	NIL
2	2007	Elizabeth J. Franzmann	pilot study	US	102 patients with HNSCC	Control =69 healthy subjects	CD44	ELISA assay	CD44 =62% to 70%	CD44 = 75% to 88%	NIL
3	2008	ME Arellano- Garcia	A Clinical study	US	Patient with Oscc= 20	Control=Norm al Healthy =20	IL-8 (single-plex) IL-8 (multiplex) IL-1β (single-plex) IL-1β (multiplex)	Bead-based assays , ELISA	OSCC (n = 20) Control (n = 20) Sensitivity IL-8 (single-plex) =75 IL-8 (multiplex) =75 IL-1 β (single-plex) =75 IL-1 β (multiplex) =80	OSCC (n = 20) Control (n = 20) Specificity (%) IL-8 (single-plex) =80 IL-8 (multiplex) =80 IL-1 β (single-plex) =80 IL-1 β (multiplex) =65	OSCC (n = 20) Mean value IL-8 (single-plex) 3313.2 \pm 3759.8 IL-8 (multiplex) 2834.9 \pm 3385.6 IL-1 β (single-plex) 945.2 \pm 1134.8 IL-1 β (multiplex) 1013.5 \pm 1221.1
4	2008	Alice Y. Chuang	A Cohort study	US	59 HNSCC patients, HPV- 16 positive=20 , HPV -16 Positive =39	NIL	HPV DNA	Quantitative PCR	HPV-16 Positive Sensitivity = 50%	HPV -16 Positive Specificity = 100%	NIL
5	2008	Shen Hu1	A Clinical study	California	OSCC = 64	Control=Healt hy subjects (n = 64	soluble CD44,, cytokeratin 19 fragment Cyfra21-1, tissue polypeptide	Reversed-phase liquid chromatography ,LC-tandem mass spectrometry,2D Quant kit,ELISA	sensitivity of 90%	specificity of 83%	NIL
6	2009	Benjamin Lallemant	A Case control study	France	case HNSCC=74	Control=Healt hy control = 18	FNI	RT-qPCR	FNI= 58.7	FNI=76.1	NIL

		1			1	r					
							IL1RN		IL1RN=93.5	IL1RN = 95.7	
							KRT13		KRT13=75.0	KRT13= 95.5	
							KRT4		KRT4=89.1	KRT4= 91.3	
							MAL		MAL=95.7	MAL=91.3	
							MMP1		MMP1=93.5	MMP1= 97.8	
							PLAU		PLAU=80.5	PLAU=89.1	
							SPARC		SPARC=71.7	SPARC=93.5	
							TGM3		TGM3=84.8	TGM3=91.3	
7	2009	T Shpitzer	A Clinical Study	Israel	Case =19	Control =19 Healthy subjects	MMP-9 Carbonyls OGG1 phospho-Src Ki67 Maspin LDH CycD1	ELISA , LDH activity was detected by kinetic spectrophotometry using a commercial kit	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MMP-9 = 79 Carbonyls = 80 OGG1 = 75 phospho-Src = 75 Ki67 = 67 Maspin = 100 LDH = 42 CycD1= 100	NIL
8	2010	Yu-Jen Jou	A Clinical study	China	OSCC = 41	Controls=30 healthy subjects	salivary transferrin levels	Two dimentional gel electrophoresis, (2DE) and mass spectrometry (MS),Western blotting and ELISA	Salivary transferrin- based ELISA=100% inT1 group, overall OSCC=95%	salivary transferrin-based ELISA was 100% in T1 group and overall OSCC=100%	The mean plasma transferrin 216.3mgdL-1 in the T1 group, 235.0mgdL-1 in the T2 group,and 203.6mgdL-1 in the T3/T4 group
9	2010	Jie Wei	A Clinical study	China	37 OSCC patients, 32 oral leukoplakia (OLK) patients	Control =34 healthy subjects	Lactic acid		Lactic acid=73.0(healthy/oscc) Lactic acid=73.0(oscc/olk)	Lactic acid=70.6(healthy/oscc) Lactic acid=75.0(oscc/olk)	NIL
							c-Aminobutyric acid		c-Aminobutyric acid=61.8(healthy/oscc) c-Aminobutyric acid=75.0(oscc/olk)	c-Aminobutyric acid= 62.2 (healthy/oscc) c- Aminobutyric acid=70.3(oscc/olk)	
							Valine		Valine=82.4(healthy/osc	Valine=75.7(healthy /oscc)	NIL

									c) Valine=78.1(oscc/olk)	Valine=75.8(oscc/ol k)	
							Phenylalanine		Phenylalanine=52.9(heal thy/oscc) Phenylalanine=71.9(oscc /olk)	Phenylalanine=56.8(healthy/oscc) Phenylalanine=75.7(oscc/olk)	
							n-Eicosadienoic acid		n-Eicosadienoic acid=51(healthy/oscc) n- Eicosadienoic acid=70.3(oscc/olk)	n-Eicosadienoic acid=73.5(healthy/o scc)	
10	2011	Yu-Jen Jou	Clinical study	China	OSCC =47,	Control =30Healthy subjects	ZNF510 peptide	Two dimentional gel electrophoresis, (2DE) and mass spectrometry (MS),Western blotting and ELISA	Salivary transferrin- based ELISA=100% inT1 group, overall OSCC=95%	salivary transferrin-based ELISA was 100% in T1 group and overall OSCC=100%	The mean plasma transferrin concentration was 216.3mgdL-1 in the T1 group, 235.0mgdL-1 in the T2 group,and 203.6mgdL-1 in the T3/T4 group
11	2011	Ole Brinkmann	A Clinical study	Europe	OSCC= 35	Control = 51 Healthy subjects	DUSP1, IL8, IL1B, OAZ1, SAT1, S100P	PCR and ELISA	Maximum Sensitivity Protein markers OSCC total, T1-T2, T3-T4 OSCC total, T1-T2, T3-T4 IL1B 0.83 0.83 0.76 0 IL8 66 0.61 0.71 0. M2BP 0.37 0.83 0.29	Maximum specificity Protein markers OSCC total T1-T2 T3-T4 T1-T2 T3-T4 IL1B = 76 0.84	NIL
12	2013	Juliana Schussel	prospective study	US	Total Case=191 Benign=113 ,Mild	NIL	DAPK	Quantitative Methylation Specific PCR	CRC – 56%	66%	NIL
					DyspIasia=.27 Moderate DyspIasia= 10 Severe				EDNRB & DCC- 46%	72%	

	1		1	1							
					Dysplasia =6 Cancer=35						
13	2013	David Elashoff	A Cohort Study	US	Cohort 1 (oscc=48)Cohort 2 (oscc=24)Cohort 3 (Oscc=30))	Cohort 1 (control=48),C ohort 2 (Control=24),	Cohort 1 (control=48),Cohort 2 (Control=24),	(qPCR)			
					Cohort 4 (oscc= 36) Cohort 5(Oscc=31	Cohort 3 (Control=30),C ohort 4 (controi=54,Co hort 5(control=70	DUSP1		DUSP1= 0.60	DUSP1= 0.56	NIL
							H3F3A		H3F3A= 0.61	H3F3A= 0.56	
							IL1B		IL1B = 0.65	IL1B = 0.60	
							IL8		IL8 = 0.68	IL8 = 0.64	
							OAZ1		OAZ1=0.62	OAZ1=0.58	
							S100P		S100P= 0.60	S100P= 0.56	
							SAT		SAT= 0.66	SAT= 0.63	
							B)Proteins				
							IL8		IL8 = 0.8	IL8 = 0.43	
							M2BP				
14	2014	Yu-Jen Jou	A clinical Study	China	OSCC=100	Control =35 Healthy subjects	S100A8	nanoLC– MS/MS,ELISA	Sensitivity for T1= (95%)	Specificity for T1=95%	NIL
									Sensitivity for T2= 0.68	Specificity for T2= 0.68	
									Sensitivity for T3=0.99	Specificity for T3=0.99	
L	I	I	1	1		l	1			1	

									Sensitivity for T4 =0.98	Specificity for T4 =0.98	
15	2014	Rajkumar. K	A Clinical study	India	Premalignant condition (50 in each group, leukoplakia & OSMF) =100 , Oscc =100	Control =100 healthy subjects	IL -8	ELISA	Sensitivity = 85%	Specificity=93%	NIL
16	2014	Qihui Wang	A Clinical study	China	oscc =30	Control=30 Healthy subjects	Lactic acid	Mass spectrometry	Lactic acid=100.0	Lactic acid=73.3	NIL
							Hydroxyphenyllactic acid		Hydroxyphenyllactic acid=82.4	Hydroxyphenyllacti c acid=60.0	
							N-nonanoylglycine		N-nonanoylglycine=52.9	N- nonanoylglycine=73 .3	
							5- hydroxymethyluracil		5- hydroxymethyluracil=47 .1	5- hydroxymethyluracil =96.7	
							Succinic acid		Succinic acid=88.2	Succinic acid=66.7	
							Ornithine		Ornithine=82.4	Ornithine=73.3	
							Hexanoylcarnitine		Hexanoylcarnitine=70.6	Hexanoylcarnitine= 60.0	
							Propionylcholine		Propionylcholine=64.7	Propionylcholine= 80.0	
							Carnitine		Carnitine=94.1	Carnitine=46.7	
							4-hydroxy-L-glutamic acid		4-hydroxy-L-glutamic acid=94.1	4-hydroxy-L- glutamic acid=56.7	
							Acetylphenylalanine		Acetylphenylalanine=82.	Acetylphenylalanine =70.0	
							Sphinganine		Sphinganine=70.6	Sphinganine=83.3	

							Phytosphingosine		Phytosphingosine=76.5	Phytosphingosine=8 3.3	
							S-carboxymethyl-L- cysteine		S-carboxymethyl-L- cysteine=88.2	S-carboxymethyl-L- cysteine=90.0	
17	2014	Qihui Wang	A Clinical study	China	oscc =30	Control=30 Healthy subjects	Salivary L- phenylalanine, L- leucine	Ultra performanceliquidc hromatography–	L-Leucine sensitivity = 84.6%	-	VIL
								electrosprayionizati on-mass			
18	2014	Chih-Ching Wu	A clinical Study	China	86 OPMD ,131 OSCC patients	controls =131 healthy subjects	anti-p53,anti- survivin, anti-CK-8, anti-Hsp60, and anti- RPLP0	multiplexed bead- based system	sensitivity with the fluorescence emission spectra=88.9	Specificity of 94.0 N % has been achieved from fluorescence emission spectra. specificity of 90%	NIL
									LR-OPMD (42) 5 (11.9% 4 (9.5%)	6) 5 (11.9%)	3 (7.1%) 6 (14.3%)
									HR-OPMD (44) 11 (25.0%) 10 (22.7 ⁴		20.5%) 9 (20.5%)
									OSCC (131) 31 (23.7%) 38 (29	31 (23.7%) 27 (2 9.0%)	0.6%) 23 (17.6%)
									Well-differentiated OSC (0 (33.3%) 23 (38.3%)		14 (23.3%) 20
										of well-differentiated O	anti-CK-8, anti-Hsp60, and SCC were 30.0%, 31.7%,
19	2014	Manoharan Yuvaraj	A Clinical Study	India	OSCC = 67	Normal subjects =27	ethidium bromide	Fluorescence spectroscopic characterization was carried out using spectroflurometer	Sensitivity with the fluorehscence emission spectra=88.9	Specificity of 94.0 % h been achieved fro fluorescence emission spectra	m
20	2015	Niranzena Panneer Selvam	A Clinical study	India	group I= 25 oral leukoplakia GroupII=25	Group III = 25 normal controls	IL-6	ELISA	NIL	NIL	groups I 43.00 ± 52.143 pg/Ml group II 132.88 ± 59.098 pg/mL group III9.68 ±

					OSCC						12.838 pg/mL.
21	2015	Salman Aziz	A Cross Sectional Study	Pakistan	OSCC patients = 30	Healthy Controls =33	Salivary IL-4, IL-10, IL-13, and IL-1RA Healthy Controls =33	Millipore's MILLIPLEX (4- plex) Human Cytokine/ Chemokine assay kit	NIL	NIL	control =82 ± 38.9 and for OSCC = 280± 146.86,
22	2015	Jasdeep Kaur	A clinical study	India	40 oral leukoplakia ,40 osmf, 40 oral squamous cell carcinoma,	Normal healthy controls =40	Salivary 8-hydroxy-2- deoxyguanosine, malondialdehyde, vitaminC, and Vitamin E	Lipid peroxidation products (MDA) were analyzed by the thiobarbituric acid (TBA) reaction . Salivary levels of 8-OHdG in supernatant were determined using a competitive ELISA kit.Vitamin C and vitamin E were estimated by HPLC	Diagnostic values of sensitivity of combination of salivary 8-OHdG (A), MDA (B), and vit. C (C) and E (D) determination in distinguishing oral precancerous, and cancer patients from healthy individuals Diagnostic values Oral squamous cell carcinoma versus vs. normal healthy were (AB)=82,(ABC)=83,(AB CD)=85 Oral pre-cancerousvs. normal healthy were(AB)=81,(ABC)=82 ,(ABCD)=83 Oral squamous cell carcinoma vs.pre- cancerous lesions were(AB)=80,(ABC)=80 ,(ABCD)=80	Diagnostic values of specificity of combination of salivary 8-OHdG (A), MDA (B), and vit. C (C) and E (D) determination in distinguishing oral precancerous, and cancer patients from healthy individuals Diagnostic values Oral squamous cell carcinoma versus vs. normal healthy were (AB)=81,(ABC)=81,(ABC D)=83 Oral pre-cancerousvs. normal healthy were(AB)=80,(ABC)=82,(ABCD)=81 Oral squamous cell carcinoma vs.pre- cancerous lesions re(AB)=79,(ABC)=80,(A BCD)=80	Mean (SD) salivary levels of oxidative stress markers in patients and healthy controls 8-OHdG (ng/ml) MDA (µmol/l) Vitamin E (µg/l) Vitamin C (µg/l) Control 0.07 (0.07) 0.08 (0.07) 1.4 (0.6) 1.2 (0.6) Oral leukoplakia 0.36 (0.07)a 0.33 (0.07)a 0.57 (0.16)a 0.55 (0.13)a Oral lichen planus 0.47 (0.07)b 0.43 (0.07)c 0.56 (0.12)b Oral submucous fibrosis 0.49 (0.08)c 0.43 (0.07)c 0.56 (0.11)c 0.53 (0.12)c Oral squamous cell carcinoma 1.19 (0.19)d 1.00 (0.21)d 0.37 (0.08)d 0.27 (0.07)d

23	2015	Shishir Ram	A Clinical study	India	GROUP I =50 oral leukoplakia, GROUP II=50 oral submucous fibrosis (OSMF),GRO UP III=50 (OSSC),	GROUPIV= 50Healthy controls	copper, zinc and iron	GBC Avanta atom absorption spectrophotometer	NIL	NIL	Mean salivary Cu levels in group HC, OSMF, OL and OSCCwere 46.07 \pm 4.56 µg/dL, 87.45 \pm 2.67 µg/dL, 55.54 \pm 2.57 µg/dLand 57.87 \pm 4.98 µg/dL,mean salivary Cu levels in group HC, OSMF, OL and OSCCwere 46.07 \pm 4.56 µg/dL, 87.45 \pm 2.67 µg/dLand 57.87 \pm 4.98 µg/dL, 55.54 \pm 2.57 µg/dLand 57.87 \pm 4.98 µg/dL,
24	2016	Ryan C. Chai	A Pilot study	Austalia	Total HNSCC = 82, Tumor specimen of 42 patient out of 82 were p16INK4 positive ,40 with p16INK4 negative	NIL	p16INK4a, HPV-16 DNAp16INK4a, HPV-16 DNA		p16INK4a positive =60%, using end- point(RT-PCR)and p16INK4positive using quantitativeRT-PCR =55%	p16INK4a positive both using end point RT-PCR and quantitative PCR=100%	NIL
25	2016	Basavaraj N	A Clinical study	India	Total Case= 60 subjects, (Group I)OSMF=25, Oral Cancer=25	Control=10	Lactate dehydrogenase	ERBA-CHEM 5 Semi Auto analyzer	NIL	NIL	The mean LDH levels were Group I= 608.28 Group II (Oral Cancer) = 630.96 Group III (control)= 39.80
26	2016	Evangelia Michailidou	A Clinical study	Greece	Patients with leukoplakia with dysplasia=20, Patients with OSCC=34	Healthy Control = 31	OAZ	Saliva RNA was performed using the QIAmpViral RNA Mini Kit and then Quantitative real- time PCR	NIL	NIL	OAZ in Normal Healthy control=35.44 ±2.07, Patients with leukoplakia with dysplasia=36.11±1.68, Patients with

27 20.6 Ju-Song Yu A. Clinical andy China Office two red (PTM). 30 (PTM). 30 (
1 1 <th></th> <th>oscc=36.69±2.19</th>															oscc=36.69±2.19
1 1 <th></th>															
1 1 <th></th>															
1 1 <th>27</th> <th>2016</th> <th>LON</th> <th></th> <th><u> </u></th> <th>102 1 1</th> <th>TT 1.1</th> <th>4 3 137 4 2</th> <th>36.1.2.1</th> <th>10</th> <th></th> <th>00.0</th> <th>1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>(0.0</th> <th>NII</th>	27	2016	LON		<u> </u>	102 1 1	TT 1.1	4 3 137 4 2	36.1.2.1	10		00.0	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(0.0	NII
1 1	27	2016	Jau-Song Yu		China		•			LC-					NIL
1 1 <th></th> <th></th> <th></th> <th>study</th> <th></th> <th></th> <th>controls=96</th> <th></th> <th>MRM-MS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>				study			controls=96		MRM-MS						
11 05CC 05T3 05C3 0															
1 1 <th></th>															
28 2017 Vin - 478 August - 400 Formula Formula <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
28 2017 Yie Yie <th></th> <th></th> <th></th> <th></th> <th></th> <th>subjects</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						subjects									
28 2017 Ying Andrian Fischi															
28 2017 Yh, - Fing Audim China Canab 6.3 GANAB 6.3 GANAB 7.34 10 Sampa-5 GSF1-1 HMGCS1 6.73 HMGCS1 6.73 11 Simpa-5 GFBP 6.7 GFBP 6.7 GFBP 6.7 11 Simpa-5 GFBP 6.7 GFBP 7.7 GFBP 7.7 GFBP 7.7 GFBP 7.7 GFAD MP1 9.7 7.8 MP1 9.7 7.8 MP1 9.7 MP1 MP1 <															
28 2017 Yie - Ting AL China China </th <th></th>															
1 1 <th></th>															
28 2017 Yier - Time Study A. Clinical Subset Total Prepare State Schemen Study Accessen 19.9cm Feature Study AlAG1= 0.792 MIL 28 Yier State Yier Study China Study Total Prepare State Schemen Study Accessen 19.9cm Feature State Accessen 19.9cm Ac															
1 1 <th></th>															
28 2017 Yier straig Arring the straig of															
28 2017 Yi fundu A Clinical Shina Total Group 1=20 AlAG1 BCA Protein Assay AlAG1=0.869 MAP1 0.5 MAP2 0.42 28 2017 Yi fundu A Clinical Shina Total Group 1=20 AlAG1 BCA Protein Assay AlAG1=0.869 MAP3 AlAG1=0.759 NL 28 Vi fundu Chen H Shina Shina Case=119gron Fleathing ACT AlAG1 ACT															
28 2017 Yi Yi A Clinical study China subscription China subscription <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>															
1 1 <th></th>															
28 2017 Yie - Ting A. Clinical Study Study <th></th>															
Image: heat back back back back back back back back															
282017Yi ChenA ChenChincal studyChina aC															
Image: heat back state Vi															
282017Yi - Ting - Khen - I - KA Clinical studyChina studyTotal case=119.grow p 1=32 OSCCGroup 1 = 2 Healthy Control, GRO MACTAlAG1 AACTBCA Protein Assay KitAlAG1= 0.869AlAG1= 0.793NIL282017Yi - Ting - SingA Clinical studyChina studyChina p 1=32 OSCCGroup 1 = 20 Healthy Control, GRO MACTAlAG1 - AACTBCA Protein Assay AACTAlAG1= 0.793NIL28Vi - SingA Clinical studyChina - SingTotal Case=119.grow P 1=32 OSCCGroup 1 = 20 Healthy Control, GRO MP 11 = 20 OSCCAlAG1 - AlAG1BCA Protein Assay AACTAlAG1= 0.793NIL29AlAG1 - MOREAlAG1 - AlAG1AlAG1= 0.672AlAG1 - APOHAlAG1= 0.672AlAG1= 0.672AlAG1 - AlAG1= 0.77620CI - CERUCERUCERUAlAG1= 0.672AlAG1= 0.776AlAG1= 0.776															
Image: state s															
282017Yi ChenA Clnical studyChina studyTotal case=119.grou p 1=32 OSCCGroup I =29 Healthy Controls.GRO UP II=29 OSCCAIAGI Healthy Controls.GRO Healthy Control ANGT ANGT ANGT ANGTBCA Protein Assay KitAIAG1=0.793NIL282017Yi ChenA Clinical studyTotal p 1=32 OSCCGroup I =29 Peakly Controls.GRO UP II=29 OSCCAIAGI AACT ANGT ANGT APOBBCA Protein Assay KitAIAG1=0.793NIL28VI P II=29 Peakly Controls.GRO ANGT ANGT ANGTAACT AACT ANGT ANGTAIAG1=0.672AIAG1=0.67229VI P II=29 Peakly ControlAPOB APOHANGT=(82.41)ANGT= 0.672ANT3=0.77620CI CERUCI CERUCI CERUANT3=0.672ANT3= 0.776															
Image: series of the series												30.3		80.4	
Chen study case=119.grou Healthy AACT DP I=32 OSCC ANGT ANGT OSCC Healthy ANGT ANGT ANT3 APOB ANGT=0.639 ANGT=0.672 APOH C1 C1 ANT3=0.672 ANT3=0.776								SIAII			SIAII 07.2		STATT 08.5		
Chen study case=119.grou Healthy AACT DP I=32 OSCC ANGT ANGT OSCC Healthy ANGT ANGT ANT3 APOB ANGT=0.639 ANGT=0.672 APOH C1 C1 ANT3=0.672 ANT3=0.776															
Chen study case=119.grou Healthy AACT DP I=32 OSCC ANGT ANGT OSCC Healthy ANGT ANGT ANT3 APOB ANGT=0.639 ANGT=0.672 APOH C1 C1 ANT3=0.672 ANT3=0.776															
Chen study case=119.grou Healthy AACT DP I=32 OSCC ANGT ANGT OSCC Healthy ANGT ANGT ANT3 APOB ANGT=0.639 ANGT=0.672 APOH C1 C1 ANT3=0.672 ANT3=0.776	28	2017	Vi Ting	A Clinical	China	Total	Group I -20	A1AC1	PCA Protein	Accov	A1AC1-0.860		A1AC1 = 0.702		NII
p I=32 OSCC Controls,GRO AACT Group II=29 ANGT ANT3 ANGT=0.639 ANGT=0.672 ANGT=0.672 APOH APOH C1 C1 CERU CERU	20	2017	-		China			AIAOI		Assay	AIA01=0.809		AIAGI= 0.795		INIL
Group II-29 OSCC UP II-29 Healthy Control ANGT AACT=0.639 AACT= 0.759 ANT3 APOB ANGT ANGT=0.672 APOH C1 C1 ANT3=0.672 CERU CERU CERU CERU			Chen	study				AACT	KII						
OSCC Healthy Control ANGT AACT=0.639 AACT= 0.759 ANT3 APOB ANGT=(82.41) ANGT= 0.672 APOH C1 ANT3=0.672 ANT3= 0.776 CERU CERU CERU CERU CERU CERU								AACI							
Image: Control ANT3 APOB ANGT=(82.41) ANGT= 0.672 APOH C1 CERU								ANGT			AACT=0.639		AACT = 0.759		
ANT3 APOB ANGT=(82.41) ANGT= 0.672 APOH C1 CERU CERU CERU						USEC		nitor -			711101-0.059		11101- 0.757		
APOB APOH APOH C1 CERU CERU CERU ANGT=(82.41) ANGT= 0.672 ANT3=0.776							Control	ANT3							
APOH C1 CERU CERU															
APOH C1 CERU CERU								АРОВ			ANGT=(82.41)		ANGT= 0.672		
C1 ANT3=0.672 ANT3= 0.776											()				
C1 ANT3=0.672 ANT3= 0.776								АРОН							
CERU															
CERU								C1			ANT3=0.672		ANT3= 0.776		
								CERU							
											<u></u>				

			CFAH	APOB=0.738	APOB= 0.776	
			CRP			
			FA12			
			FETUA	APOH=0.803	APOH=0.845	
			FIBB			
			FINC	C1 =0.639	C1 =0.914	
			HEMO			
			HEP2	CERU=0.705	CERU=0.897	
			HPT			
			HRG			
			ITIH1	CFAH=0.869	CFAH= 0.845	
			KNG1			
			PLMN			
			SAA4	CRP=0.541	CRP = 0.931	
			SAMP			
			VTNC	FA12=0.787	FA12= 0.741	
				FETUA=0.705	FETUA= 0.897	
				FIBB=0.721	FIBB =0.81	
				FINC=0.787	FINC= 0.81	
					I	

-				-		L					
									HEMO=0.754	HEMO= 0.81	
									HEP2=0.803	HEP2= 0.914	
									HPT=0.721	HPT=0.741	
									HRG=0.689		
									1110-0.009		
										HRG= 0.897	
									ITIH1=0.754		
										ITIH1= 0.828	
										11111- 0.020	
									KNG1=0.738		
										W101 0 500	
										KNG1 0.793	
									PLMN=0.738		
										PLMN= 0.793	
									SAA4=0.639		
										SAA4= 0.793	
									SAMP=0.770		
										CAMP 0.907	
										SAMP= 0.897	
									VTNC=0.721		
										VTNC= 0.914	
29	2017	Tahereh	A clinical	Iran	25 had OLP(Normal	Salivary endothelin-1	Enzyme-linked	NIL	NIL	Control=137.19,
		Nosratzehi	Study		oral Lichen	Healthy	-	immunosorbent			
					Planus) and 25	Control=25		assay			OLP=160.90,SCC=16
					had OSCC						3.98
I	I				I					1	

30	2017	Lutécia H. Mateus Pereira	A Case control study	US	oral cancer patients = 150	Control=150	CD44 and Total protein	Sandwich ELISA assay	80.7%	48.7%	control (CD44 was <2.22 ng/ml and protein was <1.23 mg/ml) and in case (CD44 was ≥2.22 & <5.33 ng/ml and protein was ≥0.558 mg/ml)
31	2017	Andre Peisker	A Clinical Study	Germany	OSCC =30	Healthy controls=30	MMP-9	ELISA	100%	26.7%	NIL
32	2018	Shrikant Patel	A biochemica l study	India	Oral leukoplakia Group II =25, Oral cancer GroupIII=25	Healthy control G roup I=25	Lactate dehydrogenase enzyme	BiovisionLactate Dehydrogenase activity colorimetric assay kit	NIL	NIL	Group I, II, and III were 261.16 ± 75.851, 497.00 ± 100.404, 686.40 ± 81.752
33	2018	Tharun Varghese,Jac ob	A Clinical Study	India	20 Precancer GRPOUPII,20 Oral cancer GROUPIII	GROUP I = 20 Healthy controls	Sialic Acid	UV-spectrophotom eter	NIL	NIL	Healthy control =21.65,Oral precancer=59.75, OSCC=204.85
34	2018	Nidhi Awasthi	cross-sectio nal study	India	30 OSCC (Group I) and 9 PML (Group II)	Healthy controls (Group III)=25	CYFRA 21-1	ELISA ,standard kit method			CYFRA 21-1 GROUP I (17.5±15.2), GROUP II (5.9±2.4,) GROUP III (3.9±2.2)
							CA 19-9				CA 19-9 GROUP I (20.1±9.0),GROUPII (19.5±3.8),GROUPIII (20.4±5.4)
							LDH				LDH GROUP I (425.4±158.2), GROUPII (19.5±3.8) GROUP III (

					20.4±5.4)
			Amylase		Amylase GROUPI
					(628.8±445.4), GROUP II
					(1115.3±275.6),GRO UPIII (1287.5±289)
			Total proteins		Total proteins GROUP I
					<i>,</i>
					(192.5±59.6),GROUP
					II (134.7±18), GROUP III (94.7±18.4)

Discussion

The aim of this review was to test the value of salivary biomarker as a diagnostic tool in oral Cancer. Saliva is a unique fluid both in its source and composition. Saliva has got the following functions including lubrication, digestion, and antimicrobial activity, facilitating remineralisation of the tooth enamel, and maintaining normal taste sensation [10]. These functions are achieved by the various components of saliva including water, inorganic and organic compounds, protein/polypeptides, and hormone [10]. So far, more than 2300 proteins and peptides have been found in human saliva [11]. The most abundant proteins in saliva are α -amylase, albumin, secretory-IgA, lactoferrin, mucins, lysozymes, proline-rich proteins, and transferrin [12]. These protein and peptides are used as a biomarker for the detection of oral cancer.

Most of the potential OSCC salivary biomarkers are listed in (Table 1). A wide range of salivary biomarkers was analysed in this systematic review including IL8, IL6, IL1B, DUSP1, H3F3A, OAZ1, S100P SAT, LDH, Fe, OAZ, Lactic acid and MMP1. Challenges in the detection of the sensitivity and specificity values of the salivary biomarker could be due to very low concentration in saliva and lack of standardization of conditions and methods of saliva sample collection, processing, and storage.

Shen Hu1 et al [13]. Demonstrated a subtractive proteomics approach to profile proteins in pooled saliva samples from 16 OSCC and 16 healthy subjects with very well matched in terms of gender, ethnicity, and age to minimize potential bias. The study concluded that the target proteins with soluble CD44, cytokeratin 19 fragment Cyfra21-1, tissue polypeptide showed a sensitivity of 90% and specificity of 83%.

T Shpitzer et al [14]. Showed that the sensitivity values of the eight analysed markers were in the range of 58–100%

whereas the specificity values were in the range of 42–100%. The sensitivity and specificity values were especially high for the CycD1 and Maspin markers, 100% for each value of each marker. These were also quite high for the carbonyls 90% and 80%, respectively, and for the MMP-9 100% and 79%, respectively. This suggests that the all eight biomarkers analysed in OSCC patients is highly desirable and beneficial if salivary tumour marker analysis could be performed on a routine basis. Furthermore, salivary biomarkers being noninvasive, and an effective alternative to serum testing, helps in detecting the OSCC at the earliest stage which will then further reduce the morbidity and mortality rate.

Ole Brinkmann et al [15]. Showed that three proteomes (IL1B, IL8, M2BP) and Four transcriptomes (IL8, IL1B, SAT1, S100P) were significantly elevated (p<0.05) in OSCC patients. The sensitivity/specificity for OSCC total was 0.89/0.78, for T1-T2 0.67/0.96, and for T3-T4 0.82/0.84. These salivary biomarkers are highly promising and recommended for OSCC detection.

Rajkumar et al [16]. Showed that the sensitivity and specificity of IL8 are 85% and 93% respectively. The study supports the utility of salivary IL-8 as a marker for routine diagnosis of OSCC and it also suggests that salivary IL-8 can be used as a screening marker of oral cancers.

Qihui Wang et al [17]. Showed the sensitivity of 84.6% and specificity of 81.7%. The possibility of salivary metabolite biomarkers for OSCC diagnosis is successfully demonstrated in this study as it is non-invasive, simple, reliable, and also provides lower detection limits and excellent precision and a simple clinical tool for the early diagnosis of OSCC.

Andre Peisker et al [18]. Showed that the sensitivity value of MMP-9 was 100% whereas the specificity value was 26.7%. The data indicate that the elevation of salivary

Page4

levels of MMP-9 may be a useful adjunctive diagnostic tool for detection of OSCC. However, the specificity values were much reduced due to lack of the standardization and methods used for the detection of the biomarker.

Most studies have investigated the potential salivary biomarker levels only in OSCC patients and non-OSCC controls, without regard for other inflammatory conditions that might have been present, so this would result in a high false positive rate. The oral cavity is commonly subjected to inflammation from a variety of causes including plaque, infection and trauma, dental certain mucocutaneous inflammatory diseases and periodontitis. So ruling out the inflammatory condition prior to the salivary sample collection is of utmost importance, in order to establish the reliability of that salivary OSCC biomarker. However, the current review demonstrates that MASPIN, CYCD1 showed 100% sensitivity and specificity with ELISA as the detection method. This is because of following a proper standardization procedure for saliva sample collection, processing, and storage. Followed by MMP1 with sensitivity and specificity of 93.5% and 97.8% respectively, when detected by the RTqPCR method. DUSP1 showed the least sensitivity of 0.14 when PCR AND ELISA were used as the detection method. Lactate dehydrogenase showed least specificity when Kinetic values detected ELISA. by spectrophotometry due to lack of standardization for the saliva sample collection, processing and storage.

Conclusion

Salivary biomarkers represent a promising highly sensitive, reliable, specific and non-invasive method for oral cancer detection. However, certain challenges include a lack of standardization for saliva sample collection, processing, and storage & wide variability in the salivary biomarkers in both healthy individuals and OSCC patients. Further studies are needed in this field, to obtain an eventual standardization especially concerning biological variance and physiological changes affecting the potential salivary biomarkers for the detection of oral cancer. This review served as an important reference in salivary diagnostics including identifying, validating, and applying salivary biomarkers for detection of OSCC. **References**

- Chi AC: Squamous cell carcinoma. In Oral and Maxillofacial Pathology. Edited by Neville BW, Damm DD, Allen CM, Bouquot JE. St. Louis: Saunders Elsevier; 2009. pp. 409–421.
- Cheng YS, Rees T, Wright J: A review of research on salivary biomarkers for oral cancer detection. Clin Transl Med. 2014; 3:3.
- Jemal A, Bray F, Center, MM, et al: Global Cancer Statistics. CA Cancer J. Clin. 2011; 61:69-90.
- Cheng Y, Wright J: Advances in diagnostic adjuncts for oral squamous cell carcinoma. The Open Pathology Journal. 2011;5:3–7.
- Kalmar JR: Advances in the detection and diagnosis of oral precancerous and cancerous lesions. Oral Maxillofacial Surg Clin N Am.2006;18:465–82.
- Patton LL, Epstein JB, Kerr AR: Adjunctive techniques for oral cancer examination and lesion diagnosis: a systematic review of the literature. J Am Dent Assoc. 2008;139:896–905.
- Wong DT: Salivary diagnostics for oral cancer. J Calif Dent Assoc. 2006 ;34:303–8.
- Wong DT: Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc : 2006;137:313–21.
- Castagnola M, Picciotti PM, Messana I, Fanali C, Fiorita A, Cabras T et al: Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol Ital. 2011; 31:347–57.

- Chiappin S, Antonelli G, Gatti R, De Palo EF: Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383:30–40.
- Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ: A dynamic range compression and threedimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J Proteome Res. 2009;8:5590–600.
- Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M: Facts and artifacts in proteomics of body fluids.What proteomics of saliva is telling us? J Sep Sci. 2008; 31:1948–63.
- Shen Hu, Martha Arellano, Pinmanee Boontheung, Jia nghua Wang, Hui Zhou, Jiang Jiang et al : Salivary proteomics for oral cancer biomarker Discovery Clin Cancer Res. 2008;14: 6246-6252.
- T Shpitzer, Y Hamzany, G Bahar, R Feinmesser, D Savulescu, I Borovoi, et al: Salivary analysis of oral cancer biomarkers. Br J Cancer. 2009;101:1194–1198.
- Brinkmann O, Kastratovic DA, Dimitrijevic MV, et al: Oral squamous cell carcinoma detection by salivary biomarkers in a Serbian population. Oral Oncol. 2011;47:51–5.
- 16. Rajkumar. K, Nandhini. G, Ramya R, Rajashree P, Ramesh Kumar A, Nirmala Anandan S : Validation of diagnostic utility of salivary interleukin-8 in differentiation of potentially malignant oral lesion and malignant oral squamous cell carcinoma in high endemic setting region, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2014;118: 309-319.
- Wang, Q., Gao, P., Wang, X. & Duan, Y: The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Sci. Rep. 2014; 4: 6802.

 Peisker A, Raschke GF, Fahmy MD, Guentsch A, Roshanghias K, Hennings J, Schultze-Mosgau S: Salivary MMP-9 in the detection of oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2017; 22 :270-5.A