

International Journal of Dental Science and Innovative Research (IJDSIR)

IJDSIR : Dental Publication Service

Available Online at: www.ijdsir.com

Volume – 2, Issue – 4, July – August - 2019, Page No. : 284 - 290

3D Printing: A Boon to Dentistry

Dr Nazish Baig, Professor and Guide , Dept of Prosthodontic, Crown And Bridge, Implantology , CSMSS, Dental College Campus, Kanchanwadi Paithan Road, Aurangabad, Maharashtra

Dr Shivani Kotewar, MDS IIyr Student, Dept of Prosthosontic, Crown And Bridge, Implantology, CSMSS, Dental College Campus, Kanchanwadi Paithan Road, Aurangabad, Maharashtra

Dr Babita Yeshwante, HOD, Dept of Prosthosontic, Crown And Bridge, Implantology, CSMSS, Dental College Campus, Kanchanwadi Paithan Road, Aurangabad, Maharashtra

Dr Vivek Jadav, Professor and Guide, Dept of Prosthosontic, Crown And Bridge, Implantology, CSMSS, Dental College Campus, Kanchanwadi Paithan Road, Aurangabad, Maharashtra

Corresponding Author: Dr Shivani Kotewar, MDS IIyr Student, Dept of Prosthosontic, Crown And Bridge, Implantology, CSMSS, Dental College Campus, Kanchanwadi Paithan Road, Aurangabad, Maharashtra

Type of Publication: Original Research Paper

Conflicts of Interest: Nil

Abstract

Curiosity is the mother of innovation. The connecting link between technologies and dentistry has often resulted in innovation in manufacturing of dental restoration initiated right from Taggarts lost wax techniques to the latest CAD/CAM, 3D printing restoration. Advent of rapid prototyping technology has opened up new perspective for design and production in field of Dentistry. 3D printing technology is an extremely versatile and rapid process. It has accelerated innovation, reduced energy, minimized material usage. This paper discusses various types of 3D printing technology using different materials and its various applications in the field of Prosthodontics.

Keywords: CAD –Computer aided design, CAM – Computer aided manufacturing, AM – Additive manufacturing, 3D – 3 Dimensional

Introduction

A new technology of fabrication of 3Dimensional prosthesis has proven to be very promising and is called

Rapid prototyping¹. Rapid prototyping (RP) is a term which embraces a range of new technologies for producing accurate parts directly from CAD models in a few hours, with little need for human intervention.² As this technology has shift from visual to the visual-tactile representation of anatomical objects introduces a new kind of interaction called 'Touch to comprehend.' In the early days of Rapid Prototyping had predominantly application in automotive and aerospace industries only.³ The difference between traditional manufacturing and 3D printing is that - The traditional manufacturing processes involve subtractive approach that includes a combination of grinding, bending, forging, moulding, cutting, gluing, welding and assembling. 3d printer involves additive approach of creating an object with material layer by layer in three dimension formations.³ The technology has been substantially improved and has evolved into a useful tool for many fields like researchers, manufacturers, designers, engineers and scientists. Collaborating different fields in

Corresponding Author: Dr Shivani Kotewar, ijdsir Volume 2 Issue 4, Page No. 284 - 290

single package formed 3D printer.⁴ what is rapid prototyping?

Rapid prototyping refers to automatic construction in mechanical models from graphical computer data.

Rapid prototyping is a type of computer aided manufacturing (CAM) and is one of the components.

Two main methods of rapid prototyping are:

Additive - widely used

Subtractive – least common⁵

Review of literature

The only subtractive technique used for medical applications is Milling, which is derived from numerically controlled (NC) machine processing.

Additive manufacturing according to the American Society for Testing and Materials (ASTM) is the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies.⁶

Authors	Year	Discovery	
Charles W. (Chuck) Hull	1984	First working robotic 3D printer	
S. Scott and Lisa Crump	1989	Patented fused deposition modelling (FDM) and co-founded the printer manufacturer Stratasys, Ltd. This technology (more generically called FFF, for fused filament fabrication)	
Bowyer	2005	Publish design for the 3d printer and called the RepRap project and named first printer as Darwin in 2007.	
	2009	"desktop" 3D printers were readily available to the public	
Morea et al.	2011	Used the SLA technique for accurate insertion of the orthodontic mini screws	
Stratasys	2013	Maker Bot became one of the earlier commercial consumer printer companies and was purchased.	

Principle of 3D Printing

The key idea of this innovative method is that the three dimensional CAD (3D-CAD) model is sliced into many thin layers and the manufacturing equipment uses this geometric data to build each layer sequentially until the part is completed. 3DP is a process of producing 3D solid objects from a digital file in STL format (surface tesselation language file or standard triangulation language file) by a 3D printer by joining, bonding, sintering or polymerizing small volume elements. Each slice is printed one on top of the other to create the 3 dimensional objects with an advantage of minimal wastage.Hence, additive fabrication is often referred as "layered manufacturing", "direct digital manufacturing", "three-dimensional printing", or "solid freeform fabrication.

Name of	Principle On	Advantages	Disadvantages	Materials
Technique	With It Works			
Extrusion Printing: Fused Deposition Modeling (FDM)	Small beads of thermoplastic material are released from a nozzle to construct the model. The3D printers adopting this technique find the highest penetration at the domestic level; often nick		Low cost but limited materials - only thermoplastics. Limited shape complexity for biological materials. Support	acrylonitrile butadiene styrene (ABS), polylactic
Material Sintering:	A laser beam hits the	-High strength objects	-Elaborated	Materials:
Selective Laser	powder and creates a melt	can control porosity.	infrastructure	Nylon, polyamide.
Sintering	pool and the powder	-Variety of materials	requirements.	
(SLS)	particles fuse together	may be recycled.	-Extremely costly	
	layer by layer to form an	-Fine detail possible.	technology moderately	
	object.		costly materials.	
			-Dust and nanoparticle	
			condensate may be	
			hazardous to health.	
			-Explosive risk.	
			Rough surface.	
			-Elaborate	
			postprocessing is	
			required: Heat	
			treatment to relieve	
			internal stresses in	
			printed objects.	
			-Hard to remove	
			support materials.	
Electron	EBM is similar to SLS,	High temperature	Extremely costly	Materials: titanium,
Beam	except for high power	process, so no	technology moderately	

Depending on the 3D Printing Process, Additive Manufacturing Can Be Classified As

Manufacturing (EBM)	Electron beam is used to	Support or heat	Costly materials. Dust	Cobalt-chrome
		* *	may be hazardous to	
	particles.		health.	-
	-	speed. Dense parts	-Explosive risk.	
		with controlled	-Rough surface. Less	
		porosity.	postprocessing	
			required.	
			- Lower resolution.	
Stereo lithography	A UV laser beam	-Rapid fabrication.	-Only available with	Materials:
(SLA)	selectively hardens the	-Able to create	light curable liquid	photopolym ers.
	photo-polymer resin in	complex shapes with	polymers.	
	layers. Each layer is	high feature	-Support materials must	
	solidified and built on top	resolution.	be removed.	
	of next until the object is	-Lower cost materials	-Resin is messy and can	
	formed.	if used in bulk.	cause skin sensitisation,	
			and may be irritant by	
			contact and inhalation.	
			-Limited shelf life and	
			vat life.	
Continuous	CLIP is similar to	-Show complex solid	-uses several	Materials:
Liquid	SLA, except for UV beam	parts drawn out of the	thermoplastic	photopolym ers.
Interface	is passed through a	resin at rates of	engineering	
Production	transparent window at the	hundreds of	technologies to produce	
(CLIP) [3]	bottom of the resin and	millimeters per hour.	great finishes and	
	builds platform raises	- Increase the printing	resolution.	
	upwards holding the 3D	speed with higher		
	printed object.	quality and a wider		
		variety of colors and		
		materials.		
		-The print speeds		
		allow parts to be		
		produced in minutes		
		instead of hours.		

..........

Material binder Binder Jetting/Inkjet	A liquid binding material is selectively dropped into the powder bed in alternative layers of powder– binding liquid– powder, until the final object is formed.	 -Relatively fast. -High resolution, - -High-quality finish possible. -Multiple materials available in various colours and physical properties including elastic materials. -Lower cost technology. 	Tenacious support material can be difficult to remove completely. Support material may cause skin irritation. Cannot be heat sterilised. High cost materials.	Materials: starch or gypsum (powder bed) and water (binding agent
Polyjet	Polyjet printing is similar to inkjet, but instead of binding agents, photopolymer liquid is sprayed in layers on to the build platform and is instantaneously cured using UV light	-Creats smooth detailed prototyping that convey final product aesthetically. -Achieve complex shapesProduce accurate molds.	-Have worsen mechanical properties. -Expensive printer	. Materials: polypropyle ne, polystyrene, polycarbona te. Lamination
Laminated Object Manufacturi ng (LOM)	Layers of adhesive coated material are successively glued together and cut in Required shapes using a laser.	-Very low internal tension of LOM parts prevents distortion, Shrinkage and deformation. -parts have high durability low brittleness and fragility.	-A high effort must be applied for decubing finishing and sealing the partThe part accuracy is Limited due to comparably simple machine design.	Materials: thin sheets of paper, polyvinyl caprolactam (PVC) plastic, or metal laminates

Application

• Bioprinting tissue and organ;

Medical uses for 3-D printing can be categorized into three segments.

• Creation of customized prosthetics, implantable devices and medical models

Pharmaceuticals

Its applications stretch across the fields of dentistry

- Fabrication of surgical guides,
- Prosthodontics(fabrication of crown copings, partial denture frame works),
- Oral and maxillofacial (surgical instruments)
- Forensic odontology,
- Restorative dentistry,
- Orthodontics use in digital orthodontics is Invisalign. (The

Invisalign system digitally realigns the patient's teeth to make a series of 3D printed models for the manufacture of 'aligners', which progressively reposition the teeth over a period of months/years),

Implantology (Porous titanium implants can be fabricated with ease using 3DP. Focusing a high-power laser beam that fuses metal particles on a powder bed generates the desired implant design layer by layer, with no postprocessing steps required)and instrument manufacturing.

Applications in maxillofacial prosthodontics

- Production of auricular and nasal prosthesis
- Obturator

• Duplication of existing maxillary/mandibular prosthesis especially crucial when an accurate fit to natural teeth or an osseointegrated implant is needed

- Manufacturing of surgical stents for patients with large tumors scheduled for excision
- Manufacturing of lead shields to protect healthy tissue during radiotherapy treatment
- Fabrications of burn stents, where burned area can be scanned rather than subjecting delicate, sensitive burn tissue to impression_taking procedures.

Conclusion

3D printing will have an increasingly important role to play in dentistry. 3DP is transforming digital dentistry by extensively penetrating opportunities in diagnosis, treatment and education. 3D printing makes it possible to accurately make one-off, complex geometrical forms from the digital data. The accelerated research in this industry and optimism would open more doors to help revolutionize digital dentistry.

References

- Kamran M, Saxena A. A comprehensive study on 3D printing technology. MIT Int J Mech Eng. 2016 Aug;6(2):63-9.
- Pham DT, Gault RS. A comparison of rapid prototyping technologies. International Journal of machine tools and manufacture. 1998 Oct 1;38(10-11):1257-87.
- Nayar S, Bhuminathan S, Bhat WM. Rapid prototyping and stereolithography in dentistry. Journal of pharmacy & bioallied sciences. 2015 Apr;7(Suppl 1):S216.
- Kamran M, Saxena A. A comprehensive study on 3D printing technology. MIT Int J Mech Eng. 2016 Aug;6(2):63-9.
- Joshi MD, Dange SP, Khalikar AN. Rapid prototyping technology in maxillofacial prosthodontics: Basics and applications. The Journal of Indian Prosthodontic Society. 2006 Oct 1;6(4):175.
- Gali S, Sirsi S. 3D Printing: the future technology in prosthodontics. Journal of Dental and Orofacial Research. 2015;11(1):37-40.
- Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. Journal of functional biomaterials. 2018 Mar;9(1):17.
- 8. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R,

© 2019 IJDSIR, All Rights Reserved

Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A, Samulski ET. Continuous liquid interface production of 3D objects. Science. 2015 Mar 20;347(6228):1349-52.

- Mueller B, Kochan D. Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Computers in Industry. 1999 Jun 1;39(1):47-53.
- 10. Joseph Krajekian, 3D Printing Role in Oral and Maxillofacial

Surgery Current and Future Trends Adv Dent & Oral Health